1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сущность и явление в философии. В чем сущность явления электромагнитной индукции

Содержание

Электромагнитная индукция — причины возникновения, значение и способы применения явления

При изменении тока в электрической цепи возникает магнитное поле. Причиной этого является электромагнитная индукция. Это явление широко применяется на практике.

В статье рассказывается о том, что это такое, и каковы его основные закономерности.

Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов.

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей.

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

Опыты, выполненные этим учёным, выглядят следующим образом:

Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.

В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая — к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.

Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.

Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов.

Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения.

Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

источником движения электронов является переменное магнитное поле;

его наличие можно обнаружить по производимому воздействию на электрические заряды;

это поле не является потенциальным;

силовые линии поля представляют собой замкнутые кривые.

Работа магнитного поля выражается в создании электродвижущей силы для электронов.

Закон электромагнитной индукции Фарадея

Основной характеристикой магнитного поля является магнитный поток. Зрительно его можно представить, как силовые линии, пронизывающие перпендикулярную плоскую фигуру, ограниченную замкнутой линией. Эти линии выражают вектор магнитной индукции.

Произведение модуля этой величины на площадь для равномерного и однородного магнитного поля равно потоку поля через рассматриваемый контур.

При рассмотрении сложного поля, фигуру разбивают на небольшие участки, в которых поле равномерно и суммируют значения для каждого из них. Для вычисления в таких случаях используются методы дифференциального и интегрального исчисления.

Электромагнитная индукция измеряется в Тесла (Тл). Эта единица получила своё название в честь великого учёного-физика.

Закон Фарадея количественно описывает влияние магнитного поля на движение электронов. Он утверждает следующее: скорость изменения потока электромагнитного поля равна порождаемой им электродвижущей силе, воздействующей на электроны и создающей ток.

Нужно заметить, что когда магнитное поле порождается изменением силы тока, то возникающая электродвижущая сила воздействует на него противоположным образом. Это можно прояснить на таком примере.

Если рассматривается провод, и в нём увеличивается сила тока, то это создаёт магнитное поле. Оно, в свою очередь, создаёт ЭДС, которая препятствует увеличению.

Правило Ленца

Это правило даёт возможность правильно определить направление индукционного тока в различных ситуациях. Оно формулируется следующим образом: направление тока, порождённого индукцией, создаёт такое изменение магнитного потока, препятствующее изменению внешнего поля, благодаря которому оно возникло.

Это можно пояснить на следующем примере. Будет рассмотрена ситуация, когда внешнее магнитное поле со временем будет возрастать, а его силовые линии направлены вверх.

Это произойдёт, например, в той ситуации, когда снизу к контуру, расположенному горизонтально, будут приближать магнит так, чтобы его северный полюс был обращён вверх. В этом случае магнитный поток будет увеличиваться, создавая электродвижущую силу.

В контуре будет создан индукционный ток. Он будет таким, чтобы магнитные силовые линии были противоположными по отношению к тем, которые характеризуют первоначальное. Теперь можно определить направление индукционного тока в контуре.

Как известно, если смотреть со стороны создаваемого поля, то он будет направлен по часовой стрелке. То есть, если смотреть сверху, направление будет против неё.

На этом примере можно увидеть, как с помощью правила Ленца можно определить направление магнитного поля и индукционного тока.

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике.

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка.

В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

Индуктивность

Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину.

Однако, если речь идёт о катушке, то её величина гораздо сильнее. Эта характеристика называется индуктивностью. Она обозначается как «L» и играет важную роль при определении различных характеристик электромагнитного поля.

Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).

Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.

На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

Энергия магнитного поля

Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

Читать еще:  Богиня луны в разных мифологиях. Боги Древней Греции – список и описание Богиня Луны у галлов

Здесь использовались такие обозначения:

W – энергия магнитного поля;

Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

Применение электромагнитной индукции

Это явление активно применяется в различных сферах жизни человеческого общества.

Далее будут приведены несколько наиболее известных примеров:

радиовещание невозможно без использования явления электромагнитной индукции;

в медицине магнитотерапия является одним из эффективных методов лечения;

при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;

счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;

для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;

в металлургии для плавки металла применяются индукционные печи.

Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

Все формулы по теме «Электромагнитная индукция»

Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.

Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

Явление электромагнитной индукции

Явление электромагнитной индукции – это то, что заставляет работать электрические двигатели, позволяет генераторам вырабатывать электричество. Именно его открытие в начале XIX века привело к активному развитию таких отраслей, как энергетика, станкостроение, транспорт. Также данное явление широко применяется в медицине, радиовещании, при производстве расходомеров – счетчиков учета электроэнергии.

О том, в чем суть этого явления, когда и кто его открыл, что такое индуктивность и самоиндукция, какой энергией характеризуется совокупность магнитных силовых линий, будет рассказано в этой статье.

Явление электромагнитной индукции

Классическое определение этого явления гласит, что оно представляет собой появление упорядоченного движения заряженных частиц в замкнутом проводящем ток контуре (проводнике) при изменении проходящей через него, создаваемой постоянным магнитом совокупности силовых магнитных линий.

На заметку. Впервые обнаружить описываемое в статье явление экспериментальным путем получилось в 1831 году у известного ученого-физика Майкла Фарадея. Для своих опытов он использовал железное кольцо с намотанными с двух противоположных сторон витками медного провода, которые были соединены с гальваническим элементом и магнитной стрелкой. При подключении к первой обмотке гальванического элемента стрелка некоторое время двигалась, после чего останавливалась, после его отключения – плавно возвращалась в первоначальное положение. Подобные движения стрелки позволили предположить, что упорядоченное движение носителей электрических зарядов может возникать под воздействием совокупности силовых магнитных линий, источником которых служит первая обмотка.

Магнитный поток

Данное явление магнитный поток представляет собой совокупность силовых линий, проходящих через определённое сечение проводника или замкнутого токопроводящего контура.

Рассчитывается модуль этой величины Ф по следующей формуле:

Ф= B×S×Cos ​α​, где:

  • В – модуль вектора создаваемой силовыми линиями индукции;
  • S – площадь поверхности​, через которую проходит поток силовых линий;
  • ​α​ – угол между векторами силовых линий индукции и нормали (т.е. перпендикуляром к пронизываемой силовыми магнитными линиями плоскости).

Измеряется данная величина в Веберах (Вб).

Закон электромагнитной индукции Фарадея

Данный фундаментальный закон имеет следующую формулировку: при любых изменениях магнитного потока, проходящего через проводящий контур, происходит возникновение электродвижущей силы (сокращенно ЭДС), значение которой прямо пропорционально скорости, с которой изменяется магнитный поток.

Отображением данной закономерности является следующая формула:

Ɛi = – ΔФ/Δt, где:

  • Ɛi – появляющаяся в токопроводящем контуре электродвижущая сила индукции;
  • ΔФ/Δt – скорость, с которой изменяется проходящий через замкнутый контур магнитный поток.

Таким образом, сила индукционного тока, образующегося в токопроводящем замкнутом контуре при воздействии на него электродвижущей силы, будет зависеть от того, с какой скоростью изменяется проходящий через него поток силовых линий магнита.

Векторная форма

В векторной форме этот закон выражается следующей формулой:

Согласно этой записи, напряжённость (E) электрического поля индукционного тока возрастает при увеличении скорости изменения потока B с силовыми линиями, пересекающими замкнутый контур.

Потенциальная форма

При помощи векторного потенциала закон электромагнитной индукции имеет следующую запись:

E =ΔA/Δt, где:

  • Е – напряженность электрического поля, порождаемого индукционным током;
  • ΔA/Δt – изменение векторного потенциала магнитного поля, проходящего через замкнутый контур, являющийся частью замкнутой цепи проводника.

Правило Ленца

Как гласит данное правило, на направление индукционного тока влияют вызвавшие его причины (факторы). Если значение Ф возрастает, то порождаемый им ток препятствует его увеличению. Если значение Ф убывает, происходит обратное: индукционный ток меняет направление, начиная препятствовать уменьшению плотности проходящих через контур силовых линий магнитного поля. Поэтому в формуле закона Фарадея содержится знак « минус».

Взаимодействие магнита с контуром

В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.

Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.

На заметку. В случае с незамкнутым (открытым) контуром: металлическим или алюминиевым кольцом, имеющим прорезь; катушкой, витки которой не замкнуты через амперметр, источник питания, данная закономерность, как и правило Ленца, не работает.

Вихревое электрическое поле

Изменяющееся во времени и пространстве магнитное поле является источником появления вихревого имеющего замкнутые силовые линии электрического поля. Его воздействие объясняет упорядоченное перемещение единичных зарядов в проводнике, находящемся в (статичном) неподвижном состоянии.

Направление силовых линий электрического поля подчиняется правилу Ленца и правилу «буравчика».

Индуктивность

Проходя по контуру, электрический ток способствует образование вокруг него совокупности магнитных силовых линий. Согласно формуле Ф = L×I​, создаваемый магнитом поток Ф пропорционально зависит от силы тока I​.

Таким образом, под индуктивностью L понимают коэффициент соотношения ​ магнитного потока Ф и силы тока I,​ протекающего по контуру. Рассчитывают данную величину по следующей формуле:

Единицей измерения этой физической величины является Генри (Гн). 1 Гн – это индуктивность, образующаяся в замкнутом контуре, в котором сила тока изменяется на 1 Ампер, а величина напряжения в нем составляет 1 Вольт.

Самоиндукция

При изменениях значения силы тока в проводнике либо токопроводящей катушке происходит изменение магнитного потока, пронизывающего его. В результате в проводнике появляется электродвижущая сила самоиндукции, значение которой определяется по следующей формуле:

ƐiS = – ΔФ/Δt= –L(ΔI/Δt).

Энергия магнитного поля

Совокупность магнитных силовых линий имеет определенный запас энергии. Так как данное явление в контуре обусловлено протеканием по нему электрического тока, то и количество такой энергии зависит от величины затрат источников (генераторов, гальванических элементов) на создание тока. Рассчитывается эта величина (Wмаг.п) по следующей математической формуле:

На заметку. С практической точки зрения, значение данной величины оказывает влияние на мощность электрических агрегатов: электродвигателей, генераторов. Чем больше мощность силовых линий, образуемых обмотками или постоянными магнитами статора и ротора, тем выше крутящий момент и мощность двигателя, больше его КПД.

Основные формулы

Основные формулы для явления магнитной индукции указаны на рисунке ниже.

Поняв, в чем заключается суть явления электромагнитной индукции, можно разобраться в том, как работают электродвигатели, генераторы. Эти знания, помимо большой теоретической ценности, имеет достаточно полезное практическое применение, позволяя самостоятельно находить, в ряде случаев и устранять, неисправности агрегатов, не прибегая к дорогостоящим услугам специалистов.

Видео

Более подробно и наглядно об описанном в данной статье явлении можно узнать в следующем видео.

Явление электромагнитной индукции. Правило Ленца

Урок 32. Физика 9 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Явление электромагнитной индукции. Правило Ленца»

Прежде чем начать наш урок, давайте подумаем, что нужно современному школьнику? Конечно же компьютер или ноутбук, например, чтобы общаться в мессенджере с друзьями из других городов. Тогда нужны ещё наушники и микрофон. А кто-то из вас скажет, что компьютер — это прошлый век, так как есть более компактные устройства — планшеты и мобильные телефоны. Но задумывался ли кто-нибудь из вас над тем, что лежит в основе работы подобных приборов. А ведь без явления, которое было открыто чуть более ста восьмидесяти пяти лет назад, эти приборы создать было бы невозможно и по сей день. Поэтому сегодня наша задача разгадать тайну работы многих из них. И тема нашего урока звучит так: явление электромагнитной индукции. Правило Ленца.

Читать еще:  Поцелуй Иуды — предательство или что-то иное?

После опытов Эрстеда стало понятно, что электрические и магнитные поля имеют одни и те же источники — движущиеся электрические заряды. Это позволило предположить, что они каким-то образом связаны друг с другом. Фарадей был абсолютно уверен в единстве электрических и магнитных явлений. Вскоре после открытия Эрстеда в своём дневнике в декабре 1821 года он пишет: «Превратить магнетизм в электричество». На решение этой фундаментальной задачи ему понадобилось 10 лет.

Давайте и мы проведём несколько опытов, подобных опытам Фарадея, только с современными приборами. Соберём электрическую цепь, состоящую из источника тока, чувствительного гальванометра, двух катушек и ключа.

Подключим одну из катушек к источнику тока, а вторую катушку расположим так, чтобы часть её входила внутрь первой катушки. Соединив выводы второй катушки с гальванометром, замкнём ключ. Опыт показывает, что в момент замыкания ключа стрелка гальванометра отклоняется на несколько делений, а затем возвращается в исходное положение. Это говорит о том, что в течение короткого времени по виткам второй катушки протекал электрический ток.

Аналогичное явление наблюдается и при размыкании ключа, только в этом случае стрелка гальванометра отклоняется в противоположную сторону, что свидетельствует об изменении направления тока в катушке.

Проделаем другой опыт Фарадея, используя то же самое оборудование. Только на этот раз ключ оставим в замкнутом положении, а катушку, соединённую с гальванометром, будем перемещать относительно первой катушки, подключённой к источнику тока. В процессе перемещения катушки в её цепи протекает ток.

Как установил учёный, неважно, какая из катушек перемещается: можно перемещать катушку, соединённую с источником, оставляя вторую катушку неподвижной. Результат будет тот же самый — в цепи катушки, соединённой с гальванометром, появляется ток.

Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индукционными, то есть наведёнными, и это название сохранилось за ними и до наших дней.

— Но как объяснить результаты опытов? Может быть здесь важную роль играет наличие источника тока?

Давайте попробуем ответить и на этот вопрос. Для чего проведём такой опыт. Соберём цепь, состоящую только из катушки и гальванометра.

Если теперь внутрь катушки вводить постоянный магнит, то стрелка гальванометра будет отклоняться, указывая на возникновение индукционного тока в цепи катушки. Это же явление можно наблюдать, если магнит оставить неподвижным, а двигать подключённую к гальванометру катушку.

Однако если мы, например, будем вращать магнит в катушке, то индукционный ток не возникнет.

Проделаем ещё несколько опытов. Поместим в магнитное поле плоский контур, концы которого соединены с гальванометром. Ели контур привести во вращение, то стрелка гальванометра начнёт отклоняться, фиксируя появление индукционного тока.

Ток также будет возникать и в случае, когда рядом с контуром или внутри него приводить во вращение постоянный магнит.

«Ток возникает лишь при движении магнита относительно провода, а не в силу свойств, присущих ему в покое», — записал Фарадей в свой научный дневник.

Хотя приведённые опыты внешне выглядят различно, Фарадей уловил нечто общее, от чего зависит возникновение индукционного тока. Именно в замкнутом проводящем контуре индукционный ток возникает только тогда, когда изменяется число линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Поскольку число линий индукции определяет магнитный поток, то при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток, существующий в течение всего времени изменения магнитного потока.

Здесь мы сформулировали сущность явления электромагнитной индукции на качественном уровне. С количественной формулировкой закона электромагнитной индукции вы познакомитесь при дальнейшем изучении физики в старших классах.

В дневнике Майкла Фарадея записана дата открытия явления электромагнитной индукции — 29 августа 1831 года. Интересно, что почти в одно и то же время с Фарадеем эксперименты по получению электрического тока с помощью магнита проводил швейцарский физик Жан-Даниэль Колладон. Для этого он использовал гальванометр с лёгкой магнитной стрелкой. Чтобы магнит не оказывал влияния на стрелку прибора, концы катушки были выведены в соседнюю комнату и там присоединены к гальванометру. Вдвинув магнит в катушку, Колладон шёл в эту комнату и разочарованный убеждался, что гальванометр не показывал наличие тока в цепи.

Я думаю, вы догадались почему? Если бы он всё время наблюдал за гальванометром, а магнитом занимался бы кто-то другой, то замечательное открытие было бы сделано Колладоном.

Были попытки и у других учёных, например, американский физик Джозеф Генри также успешно проводил опыты по индукции токов в то же время, что и Майкл Фарадей. Но, по неизвестным причинам, учёный прекратил свои эксперименты и вернулся к ним лишь девять месяцев спустя. Сегодня точно известно, что открытие электромагнитной индукции Генри совершил в июне тысяча восемьсот тридцать второго года. Если бы Генри не прервал свои эксперименты. В таких случаях на ум приходит известная русская пословица: терпение и труд всё перетрут. А, как мы увидели, терпение позволило только Фарадею довести начатое дело до конца.

Однако оставался ещё один не решённый вопрос: каково направление возникающего индукционного тока?

Чтобы на него ответить проведём простой опыт. Возьмём два одинаковых алюминиевых кольца, закреплённых на концах алюминиевого коромысла.

Обратите внимание, что одно из колец сплошное, а в другом есть прорезь. Коромысло надето на иглу штатива и может свободно вращаться вокруг вертикальной оси. Возьмём полосовой магнит и внесём его в кольцо с разрезом — никаких изменений мы не наблюдаем. А теперь внесём магнит в сплошное кольцо. Удивительно, но у нас ничего не получается — кольцо «убегает» от магнита, поворачивая при этом всю пластинку.

— Почему же так происходит?

Дело в том, что при приближении к кольцу магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом ток циркулировать не может.

Возникающий индукционный ток в сплошном кольце порождает в нём магнитное поле. При этом оно имеет такое направление, что линии индукции магнитного поля, порождённого индукционным током, направлены противоположно линиям индукции внешнего поля магнита. То есть, кольцо и магнит обращены друг к другу одноименными по́люсами.

Придержим кольцо рукой и внесём в него магнит. А теперь начнём его выдвигать из кольца — кольцо стремиться за магнитом.

Объясняется это тем, что при уменьшении магнитного потока (выдвигание магнита), индукционный ток имеет в нем такое направление, что линии индукции возникающего магнитного поля совпадают по направлению с линиями индукции внешнего магнитного поля. То есть кольцо и магнит обращены друг к другу разноимёнными полюсами.

Таким образом, проследив за взаимодействием между кольцом и магнитом во всех случаях и сравнив его с направлением движения магнита, можно видеть, что взаимодействие между полюсами всегда препятствует движению магнита.

В тысяча восемьсот тридцать четвёртом году русскому учёному Эмилию Христиановичу Ленцу удалось обобщить эти закономерности и сформулировать общее правило. Найденную им связь называют правилом Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

Интересен, что о вопросах надобности и ненадобности открытия явления электромагнитной индукции долго спорил научный, и не только, мир. В архивах сохранилась следующая примечательная запись:

«Однажды после лекции Фарадея в Королевском обществе, где он демонстрировал свои опыты, к нему подошёл богатый коммерсант, оказывавший обществу материальную поддержку, и надменным голосом спросил:

— Всё, что вы нам здесь показывали, господин Фарадей, действительно красиво. Но теперь скажите мне, для чего годится эта магнитная индукция!?

Читать еще:  Как проводится Международный день науки

— А для чего годится только что родившийся ребёнок? — ответил рассердившийся Фарадей.»

На вопрос коммерсанта в последующие годы ответили многие учёные и изобретатели. Среди них и были наши соотечественники: Эмилий Христианович Ленц, Борис Семёнович Якоби и Михаил Иосифович Доливо-Добровольский внёсшие незаменимый вклад в развитие электротехнике. А также французский изобретатель Ипполит Пикси, построивший в 1832 году первую динамо-машину, положившую основу для промышленного производства электроэнергии.

Явление электромагнитной индукции

Урок: Явление электромагнитной индукции.

Цели и задачи урока

Закрепить знания о магнитном поле и установить связь между электрическим и магнитным полем.

раскрыть сущность явления электромагнитной индукции.

Познакомить с историей явления электромагнитной индукции.

В нетрадиционной, занимательной форме подвести учащихся к изучению новой темы, повторить основной программный материал, развить познавательную активность и творчество учащихся, их смекалку, наблюдательность и чувство юмора, расширить технический кругозор.

Оборудование: гальванометр демонстрационный от вольтметра, магнит прямой, трансформатор универсальный, реостат на 50 Ом, выключатель демонстрационный, источник питания, провода соединительные.

Возникновение индукционного тока в замкнутом проводящем контуре (катушке индуктивности).

Приемы и методы

Приветствие. Проверка отсутствующих. Готовность к уроку

Организация восприятия информации. Постановка целей

Беседа. Установка связи

с ранее изученным материалом.

Проверка домашнего задания.

Изучение нового материала

Эксперимент. Беседа. Презентация. Рассказ учителя.

Рефлексия. Дом. задание.

1. Организационный момент:

предварительная организация класса (проверка отсутствующих, проверка готовности учащихся к началу работы).

2. Постановка целей и задач:

Представьте себе такую ситуацию: к вам в класс пришёл новый ученик (ученица). Что для вас важнее в нём:

внешность, характер, его материальное состояние, или что-то другое? (задаётся дважды, отвечает мальчик и девочка).

Проведём аналогию с темой, которую сейчас изучаем. « Новым учеником » будет сама тема «Явление электромагнитной индукции» .

Что, по-вашему, необходимо выяснить о нём? Какова цель урока?

Итак, цель урока: познакомиться с явлением электромагнитной индукции .

Учитель: сегодня на уроке мы закрепим знания о магнитном поле и установим взаимосвязь электрического и магнитного поля. Чтобы успешно справиться с поставленными задачами, необходимо повторить пройденный материал, который нам поможет в решении проблем, выявленных на уроке.

Проверка домашнего задания:

Проверку домашнего задания проведем в виде тестирования письменно в тетрадях. Тест состоит из 5 вопросов. На них учащиеся выбирают только один правильный ответ из 4 возможных ответов.

Какие магнитные полюсы изображены на рисунке?

А – северный, В – южный;

А – южный, В – северный;

А – северный, В – северный;

А – южный, В – южный.

Вблизи движущегося магнита можно обнаружить

Только магнитное поле;

Только электрическое поле;

И электрическое, и магнитное поля;

Поочередно то электрическое, то магнитное поле.

Как взаимодействуют два параллельных друг к другу проводника, если электрические токи в них противоположны по направлению?

Сила взаимодействия равна нулю;

Проводники поворачиваются в одинаковом направлении.

1) отклонение магнитной стрелки при протекании электрического тока по проводу;

2) взаимодействие параллельных проводников с током;

3) возникновение тока в замкнутой катушке при введении в нее магнита;

4) взаимодействие двух магнитных стрелок .

По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи I (см. рисунок).

Как направлен вектор индукции создаваемого ими магнитного поля в точке С ?

1) к нам 2) от нас 3) вверх 4) вниз

По истечении 5 минут, учащиеся по парте обмениваются тетрадями и, сверяясь с ответами, проверяют тестовое задание, но ничего не исправляют в тетрадях, а только на полях ставят минус, где есть ошибка, и подчеркивают их. После этого в ходе беседы анализирую ответы и допущенные погрешности.

Ответы тестового задания

Если на все вопросы даны правильные ответы, то бал «5»; одна ошибка или незнание одного ответа – «4»; две ошибки – «3»; более двух ответов – «2». Свои оценки учащиеся ставят в квитанции.

ФИО учащегося

Сумма баллов

В конце взаимопроверки по моей команде квитанции передаются вперед по рядам.

4. Этап объяснения нового материала

Историческая справка. В 1831 году английский физик Майкл Фарадей осуществил опыты по получению электрического тока с помощью магнитного поля. Повторим эти опыты, используя современные школьные оборудования.

Эксперимент

В катушку соединенную с гальванометром, внесём постоянный магнит. Стрелка гальванометра будет отклоняться, что свидетельствует о возникновении тока в замкнутой цепи при движении магнита относительно катушки.

Собираем установку, изображенную на рисунке. Включая и выключая ключ замыкания, наблюдаем возникновение слабого индукционного тока в катушке подключенного к гальванометру.

Выключаем ток. Увеличиваем сопротивление реостата до 50 Ом, насаживаем катушки на сердечник и замыкаем ключ. При включении и выключении тока стрелка гальванометра отклоняется почти на всю шкалу.

Включаем ток. медленно и по возможности равномерно увеличиваем силу тока в цепи. В течение этого времени гальванометр показывает наличие более и менее постоянного индукционного тока. затем уменьшают ток до минимума и наблюдают индукционный ток противоположного направления.

В чем причина возникновения индукционного тока?

Имеется ли магнитное поле в катушке?

При каких условиях возникает индукционный ток?

Почему стрелка гальванометра оставалась неподвижной?

Будет ли возникать индукционный ток в катушке при поступательном движении второй катушки? Вращательном?

Из опыта делается вывод: (запись в тетради)

индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой;

— индукционный ток возникает при движении катушек друг относительно друга;

— при изменении силы тока в одной из катушек с помощью реостата;

— при движении постоянного магнита относительно катушки.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

5.Рефлексия. Что сегодня узнали на уроке?

Чего бы Вы хотели еще узнать?

Понравился ли Вам сегодняшний урок?

Домашнее задание. Решите кроссворд

Ну, а наш урок подходит к концу. И закончить его мне хотелось бы словами гениального ученого Альберта Эйнштейна:

«День, в который вы ничего не узнали, — это потерянный день. Нам так много надо узнать — у нас так мало на это времени»

Не теряйте понапрасну времени, старайтесь больше узнать о мире, в котором мы живём. Ведь желание узнать и расширить свои знания об уже узнанном – это естественная потребность любого здравомыслящего человека.

Всем спасибо за работу.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс профессиональной переподготовки

Физика: теория и методика преподавания в образовательной организации

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

Онлайн-конференция для учителей, репетиторов и родителей

Формирование математических способностей у детей с разными образовательными потребностями с помощью ментальной арифметики и других современных методик

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

В этом материале представлен конспект урока для учителей физики. Урок был проведен в 9 классах Томторской средней общеобразовательной школе в рамках проведения конкурса «Лучший учитель года — 2015». По положению конкурса урок был сокращен на 15 минут, то есть рассчитан на 30 минут. Цели и задачи урока

— Закрепить знания о магнитном поле и установить связь между электрическим и магнитным полем.

— раскрыть сущность явления электромагнитной индукции.

— Познакомить с историей явления электромагнитной индукции.

— В нетрадиционной, занимательной форме подвести учащихся к изучению новой темы, повторить основной программный материал, развить познавательную активность и творчество учащихся, их смекалку, наблюдательность и чувство юмора, расширить технический кругозор.

Оборудование: гальванометр демонстрационный от вольтметра, магнит прямой, трансформатор универсальный, реостат на 50 Ом, выключатель демонстрационный, источник питания, провода соединительные.

Возникновение индукционного тока в замкнутом проводящем контуре (катушке индуктивности).

Приемы и методы Время

1 Организационный момент Приветствие. Проверка отсутствующих. Готовность к уроку 1 мин

2. Организация восприятия информации. Постановка целей Беседа. Установка связи

с ранее изученным материалом. 2 мин.

3. Проверка домашнего задания. Тест. Взаимопроверка. 10 мин.

4 Изучение нового материала

(Постановка проблемы) Эксперимент. Беседа. Презентация. Рассказ учителя. 10.мин.

5. Рефлексия. Дом. задание. Разгадывание кроссворда 7 мин.

Тестовые задания и материал урока соответствуют обязательному минимуму и требованиям к содержанию образования выпускников основной школы. По своему усмотрению задания можете усложнить и облегчить в соответствии с уровнем обучающихся.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector