2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает магический квадрат? Упрощенные квадратные корни.

Содержание

Магический квадрат — виды, правила и примеры решения

Среди поклонников логических игр большой популярностью пользуется магический квадрат. Он представляет собой таблицу, заполненную особым образом цифрами. Причём сумма чисел одинакова по всем направлениям. Эту величину принято называть константой. Существует множество вариантов таких головоломок разной степени сложности.

История и современное применение

Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.

В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.

В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.

С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.

Квадрат нечётного порядка

Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.

Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:

  • Подсчитывается сумма, которая должна получиться в каждой строке. Для этого используется формула: 3 * (32 +1) / 2 = 3 * 10 / 2. Ответом будет число 15.
  • Числа в ячейках расставляются так, чтобы сумма их была равна 15 в каждой строчке. Это требует смекалки и воображения.
  • В средней клетке верхней строки вписывается 1.
  • Каждое следующее число ставится справа по диагонали вверх. Поставить цифру 2 нельзя, так как выше нет строк. Если мысленно добавить сверху ещё один квадрат, цифра 2 окажется в его нижнем правом углу. Значит, цифра 2 вписывается в нижнюю правую клетку.
  • По тому же принципу вписывается цифра 3. Она попадает в среднюю ячейку слева.
  • Если нужная клетка уже занята, очередной символ вписывается ниже предыдущего. Таким образом, 4 ставится под 3.
  • Записывается цифра 5 по диагонали вправо и вверх, а 6 в верхний угол справа.
  • Поскольку место цифры 7 уже занято, она вписывается ниже 6.
  • Восьмёрка занимает место в левом нижнем углу.
  • Оставшуюся клетку занимает девятка.

    Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.

    Одинарная чётность

    Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.

    Вычисление магической константы

    Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.

    Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.

    Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.

    Дальнейшие действия

    Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.

    Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:

  • Минимальное число, которым начинается заполнение ячеек, всегда ставится в верхнем ряду посередине. У каждой части эта ячейка находится отдельно.
  • Каждая часть заполняется как новый математический объект. Даже если есть пустое место в другом квадрате, его в этих случаях игнорируют.

    В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.

    Алгоритм действий:

  • Начинать нужно с крайней левой клетки в верхней строке. Если фигура имеет размеры 6х6, выделяется только первая верхняя строка части А. В ней должно быть вписано число 8. Если величина таблицы составляет 10х10, выделяют 2 первые клетки в верхнем ряду. В них стоят 17 и 24.
  • Из выделенных клеток формируется промежуточный квадрат. В таблице с количеством строк и столбцов 6х6 он будет состоять из 1 клетки. Его условно обозначают А1.
  • Если размер 10х10, в верхней строке выделяется 2 первые ячейки. Вместе с ними выделяется ещё 2 клетки, во второй строке получается поле из 4 прилежащих друг к другу ячеек.
  • В следующей строке первая ячейка пропускается, затем выделяется столько клеток, сколько было в промежуточной таблице А1. Полученную фигуру можно обозначить А2.
  • Таким же способом строят промежуточный квадрат А3.
  • Эти 3 промежуточных фигуры формируют выделенную область А.
  • Далее переходят в квадрант D и формируют обособленную область D.

    Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.

    Двойной порядок

    Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

    Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

    В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

  • Если длина стороны составляет 4 ячейки, промежуточные зоны будут иметь по 1 клетке.
  • В таблице 8х8 эти области включают 4 элемента (2х2).
  • В квадрате 12х12 выделяются промежуточные фигуры размером 3х3.

    Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

    Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

  • В первой сверху строке и первом слева столбце пишется 1. В верхней клетке четвертого столбика — 4.
  • В центр второй горизонтальной строчки ставятся цифры 6 и 7.
  • В четвёртой строке слева пишется 13, а справа — 16.

    По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

    Магический квадрат — виды, правила и примеры решения

    История и современное применение

    Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.

    В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.

    В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.

    С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.

    Квадрат нечётного порядка

    Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.

    Читать еще:  Сны означают по сунне и корану. Исламский сонник имама ибн сирина и значение снов в исламе

    Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:

    1. Подсчитывается сумма, которая должна получиться в каждой строке. Для этого используется формула: 3 * (32 +1) / 2 = 3 * 10 / 2. Ответом будет число 15.
    2. Числа в ячейках расставляются так, чтобы сумма их была равна 15 в каждой строчке. Это требует смекалки и воображения.
    3. В средней клетке верхней строки вписывается 1.
    4. Каждое следующее число ставится справа по диагонали вверх. Поставить цифру 2 нельзя, так как выше нет строк. Если мысленно добавить сверху ещё один квадрат, цифра 2 окажется в его нижнем правом углу. Значит, цифра 2 вписывается в нижнюю правую клетку.
    5. По тому же принципу вписывается цифра 3. Она попадает в среднюю ячейку слева.
    6. Если нужная клетка уже занята, очередной символ вписывается ниже предыдущего. Таким образом, 4 ставится под 3.
    7. Записывается цифра 5 по диагонали вправо и вверх, а 6 в верхний угол справа.
    8. Поскольку место цифры 7 уже занято, она вписывается ниже 6.
    9. Восьмёрка занимает место в левом нижнем углу.
    10. Оставшуюся клетку занимает девятка.

    Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.

    Одинарная чётность

    Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.

    Вычисление магической константы

    Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.

    Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.

    Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.

    Дальнейшие действия

    Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.

    Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:

    1. Минимальное число, которым начинается заполнение ячеек, всегда ставится в верхнем ряду посередине. У каждой части эта ячейка находится отдельно.
    2. Каждая часть заполняется как новый математический объект. Даже если есть пустое место в другом квадрате, его в этих случаях игнорируют.

    В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.

    Алгоритм действий:

    1. Начинать нужно с крайней левой клетки в верхней строке. Если фигура имеет размеры 6х6, выделяется только первая верхняя строка части А. В ней должно быть вписано число 8. Если величина таблицы составляет 10х10, выделяют 2 первые клетки в верхнем ряду. В них стоят 17 и 24.
    2. Из выделенных клеток формируется промежуточный квадрат. В таблице с количеством строк и столбцов 6х6 он будет состоять из 1 клетки. Его условно обозначают А1.
    3. Если размер 10х10, в верхней строке выделяется 2 первые ячейки. Вместе с ними выделяется ещё 2 клетки, во второй строке получается поле из 4 прилежащих друг к другу ячеек.
    4. В следующей строке первая ячейка пропускается, затем выделяется столько клеток, сколько было в промежуточной таблице А1. Полученную фигуру можно обозначить А2.
    5. Таким же способом строят промежуточный квадрат А3.
    6. Эти 3 промежуточных фигуры формируют выделенную область А.
    7. Далее переходят в квадрант D и формируют обособленную область D.

    Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.

    Двойной порядок

    Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

    Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

    В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

    1. Если длина стороны составляет 4 ячейки, промежуточные зоны будут иметь по 1 клетке.
    2. В таблице 8х8 эти области включают 4 элемента (2х2).
    3. В квадрате 12х12 выделяются промежуточные фигуры размером 3х3.

    Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

    Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

    1. В первой сверху строке и первом слева столбце пишется 1. В верхней клетке четвертого столбика — 4.
    2. В центр второй горизонтальной строчки ставятся цифры 6 и 7.
    3. В четвёртой строке слева пишется 13, а справа — 16.

    По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

    Как работает магический квадрат? Упрощенные квадратные корни.

    Магические (волшебные) квадраты издавна использовались как защитные амулеты, для различной магии и для шифрования.

    Магический квадрат — это квадрат, заполненный числами так, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Проверьте:

    276
    951
    438

    Ниже идет слово, зашифрованное с помощью магического квадрата:

    Вписываем буквы в магический квадрат рядом с числами:

    2, О7, И6, В
    9, Е5, О1, С
    4, Р3, К8, Щ

    Теперь читаем буквы по порядку чисел, начиная с 1: СОКРОВИЩЕ.

    Пример конкурсного задания 1

    Отличник Вася решил нарисовать на своей футболке магический квадрат, с помощью которого он зашифровал фразу:

    У него получилось (без пробела)

    Ч Н О Я И К И Т Л

    К сожалению, младшая сестра Васи закрасила все числа от 1 до 9 фломастерами.

    Какое число должно стоять в левом нижнем углу квадрата?

    Впиши число цифрами в поле для ввода:

    Подсказка: при решении нужно учесть, что буква И в шифровке встречается два раза.

    Пример конкурсного задания 2

    Вот сколько лет было Гарри Поттеру, когда он поступил в школу волшебников Хогвардс:

    Возраст зашифрован с помощью магического квадрата. К сожалению, верхний левый угол записки сжевал троль.

    14
    27
    3169
    151054

    Сколько лет было Гарри?

    Пример конкурсного задания 3

    Задание зашифровано с помощью магического квадрата. К сожалению, часть квадрата стерта.

    Восстановите квадрат и выполните задание. Ответ запишите в поле цифрами.

    Пример конкурсного задания 4

    Перехвачен обрывок папируса, на котором с помощью магического квадрата зашифровано количество боевых колесниц.

    163213
    51011
    96
    4

    Ь С Е В Ь Т Д С Я Д Е Е Т Т Я Ш

    Восстановите магический квадрат и расшифруйте сообщение.

    Ответ запишите в поле цифрами.

    Пример конкурсного задания 5

    ТСДЯ ВПЬЮ ЬАЛЦ ПАТД

    нужно расшифровать с помощью магического квадрата:

    712114
    213811
    163105
    96154

    К сожалению, несколько чисел в квадрате оказались утраченными (пергамент с донесением пробила стрела).

    Восстановите магический квадрат. Расшифруйте задание. Найдите ответ. Запишите ответ цифрами в поле для ввода:

    Основные методы построения магических квадратов с нечетным числом клеток

    Рубрика: Математика

    Статья просмотрена: 4866 раз

    Библиографическое описание:

    Бурханова, Ю. Н. Основные методы построения магических квадратов с нечетным числом клеток / Ю. Н. Бурханова, Е. А. Касаткина. — Текст : непосредственный // Молодой ученый. — 2010. — № 4 (15). — С. 29-35. — URL: https://moluch.ru/archive/15/1386/ (дата обращения: 13.10.2021).

    Предлагаемая вниманию читателей статья посвящена вопросу, стоящему довольно далеко от центральной линии развития математической науки.

    Священные, волшебные, загадочные, таинственные совершенные… Как только их не называли. Они пользовались особой популярностью у прорицателей, астрологов и врачевателей. Привлекающие своей красотой, наполненные внутренней гармонией, доступные, но по-прежнему непостижимые, скрывающие за кажущейся простотой множество тайн… Знакомьтесь: магические квадраты – удивительные представители воображаемого мира чисел.

    Учение о магических квадратах занимало в математике значительное место лишь в тот период времени, когда всем руководили суеверия и астрология; в дальнейшем при возникновении новых естественнонаучных и технических задач теория магических квадратов стала не нужна. Однако учение о магических квадратах до сих пор может представлять интерес для любителей математики, в первую очередь для учащихся, в силу простоты и наглядности задач, не говоря уже о том, что это учение представляет собой благодарное поле приложения ряда более теоретико-числовых концепций.

    Предлагаю вниманию читателя рассмотреть наиболее известные методы построения магических квадратов с нечетным числом клеток. При этом мы ограничиваемся лишь «классическими» магическими квадратами, т.е. квадратами, состоящими из последовательных натуральных чисел от 1 до .

    Читать еще:  Планета Х — Nibiru (Нибиру)

    Числовым квадратом порядка n, где n – некоторое положительное целое число, мы будем называть квадрат, разбитый на n 2 клеток, в которых размещены ( в некотором порядке) целые числа от 1 до . Числовой квадрат мы будем называть магическим, если суммы, получаемые от сложения чисел каждого горизонтального ряда, каждого вертикального ряда и обеих диагоналей, одинаковы. Так как квадрат порядка n и сумма чисел каждого ряда одинакова, то сумма всех чисел, размещенных в магическом квадрате, равна . С другой стороны, она равна[3]

    . (1)

    Условия равенства суммы элементов отдельных строк, столбцов и диагоналей числу мы будем называть условиями магичности этих строк, столбцов и диагоналей.[3]

    Пример магического квадрата порядка 4 приведен на рис.1. (это так называемый квадрат Дюрера, изображенный на его гравюре «Меланхолия»). Для него в согласии с формулой (1), .

    Рис.1. Квадрат Дюрера

    Несмотря на то, что в свое время (особенно в XVI- XVIII веках) магические квадраты были предметом пристального изучения известных математиков, все же она не может считаться завершенной. Достаточно сказать, что до сих пор не известен никакой общий метод построения всех магических квадратов данного порядка n. Можно лишь утверждать, что это число делится на 8, так как из любого магического квадрата поворотами на 90 вокруг центра и отражениями в сторонах получаются еще 7 новых магических квадратов[4].

    Клетки магического квадрата порядка n мы будем обозначать парами целых чисел (x,y) – их координатами, где х – номер вертикального ряда, у – номер горизонтального ряда, на их пересечении находится данная клетка[2]. При этом вертикальные мы нумеруем слева направо, а горизонтальные – снизу вверх. В качестве номеров мы будем использовать числа

    Сдвигая основной квадрат параллельно самому себе на векторы с целочисленными координатами, делящимися на n, мы получим систему налегающих друг на друга квадратов порядка n, покрывающую всю плоскость. Две клетки, принадлежащим двум таким квадратам и занимающие относительно них одинаковое положение, мы будем называть эквивалентными. В дальнейшем эквивалентные клетки будут играть одинаковую роль и будут рассматриваться как одинаковые. Каждое целое число z=1, 2, . . ., n 2 мы можем записать в виде

    где r и s – некоторые числа системы (2), однозначно определенные числом z и, обратно определяющее это число. Мы будем числа r и z называть координатами числа z[2].

    Например, при n=3 координаты чисел

    z=1, 2, 3, 4, 5, 6, 7, 8, 9

    имеют соответственно вид

    При задании некоторого магического квадрата порядка n каждой паре r,s сопоставляется пара чисел х, у – координаты клетки квадрата, в которую вписано число с координатами r, s. Другими словами, числа х и у являются функциями чисел r и s. Обозначая эти функции буквами f и g, мы получим, следовательно, что х = f(r, s) и у = g(r, s).

    В дальнейшем любую пару f(r, s) и g(r, s) мы будем называть методом построения магических квадратов[2].

    Описанное сведение задачи построения магического квадрата к задаче построения пары функций f(r, s) и g(r, s) позволяет, в частности, классифицировать способы построения магических квадратов в зависимости от характера этих функций.

    Индийский метод.

    Индийский метод составления магических квадратов (иногда называемые также сиамским) является, по-видимому, самым древним алгоритмом построения магических квадратов произвольного нечетного порядка n=2m+1. этот алгоритм описывают следующими правилами[2]:

    1 . Числа от 1 до n2 поочередно вписываются в клетки основного квадрата.

    2 . Если некоторое правило требует вписать данное число в клетку, лежащую вне основного квадрата, то вместо этого рассматриваемое число вписывается в эквивалентную клетку основного квадрата.

    3 . Число 1 вписывается в среднюю клетку верхнего ряда, т.е. в клетку с координатами (m, 2m).

    4 . Если число z вписано в клетку с координатами (х, у), то следующее число z+1 вписывается в клетку с координатами (х+1, у+1), т.е. в клетку, смежную с клеткой (х, у), в направлении восходящей диагонали, при условии, что эта последняя клетка еще свободна от чисел.

    5 . Если клетка с координатами (х+1, у+1) уже занята некоторым числом, то число z+1 вписывается в клетку с координатами (х, у-1), т.е. в клетку, непосредственно примыкающую снизу к клетке (х, у). (оказывается это всегда возможно, т.е. клетка (х, у-1) обязательно свободна от чисел).

    На рис.2 изображен магический квадрат третьего порядка, построенный индийским методом. Для ясности в этом рисунке заполнены также некоторые клетки вне основного квадрата. Не описывая подробно это построение, мы укажем лишь, что число 1 вписано на основании правила 1 и 3 , число 2 – на основании правил 4 и 2 , число 3 – на основании правил 4 и 2 , число 4 – на основании правил 5 и 2 , число 5 – на основании правила 4 , число 6 – на основании правила 4 , число 7 – на основании правил 5 и 2 , число 8 – на основании правил 4 и 2 и, наконец, число 9 – на основании правил 4 и 2 .

    Как решить магический квадрат (3 класс)? Пособия для школьников

    Математических загадок существует невообразимое количество. Каждые из них уникальны по-своему, но их прелесть заключается в том, что для решения неизбежно нужно приходить к формулам. Конечно же, можно попытаться решить их, как говорится, методом тыка, но это будет очень долго и практически безуспешно.

    В данной статье будет говориться об одной из таких загадок, а чтобы быть точнее — о магическом квадрате. Мы детально разберем, как решить магический квадрат. 3 класс общеобразовательной программы, конечно, это проходит, но возможно не каждый понял или вовсе не помнит.

    Что это за загадка?

    Магический квадрат, или, как его еще называют, волшебный, — это таблица, в которой число столбцов и строк одинаково, и все они заполнены разными цифрами. Главная задача, чтобы эти цифры в сумме по вертикали, горизонтали и диагонали давали одинаковое значение.

    Помимо магического квадрата, есть еще и полумагический. Он подразумевает то, что сумма чисел одинакова лишь по вертикали и горизонтали. Магический квадрат «нормальный» только в том случае, если для заполнения использовались натуральные числа от единицы.

    Еще есть такое понятие, как симметричный магический квадрат — это когда значение суммы двух цифр равно, в то время, когда они располагаются симметрично по отношению к центру.

    Важно также знать, что квадраты могут быть любой величины помимо 2 на 2. Квадрат 1 на 1 также считается магическим, так как все условия выполняются, хотя и состоит он из одного-единственного числа.

    Итак, с определением мы ознакомились, теперь поговорим про то, как решить магический квадрат. 3 класс школьной программы вряд ли все так детально разъяснит, как эта статья.

    Какие есть решения

    Те люди, которые знают, как решить магический квадрат (3 класс точно знает), сразу же скажут, что решения только три, и каждое из них подходит для разных квадратов, но все же нельзя обойти стороной и четвертое решение, а именно «наугад». Ведь в какой-то мере есть вероятность того, что незнающий человек все же сможет решить данную задачку. Но данный способ мы отбросим в длинный ящик и перейдем непосредственно к формулам и методикам.

    Первый способ. Когда квадрат нечетный

    Данный способ подходит только для решения такого квадрата, у которого количество ячеек нечетное, например, 3 на 3 или 5 на 5.

    Итак, в любом случае изначально необходимо найти магическую константу. Это число, которое получится при сумме цифр по диагонали, вертикали и горизонтали. Вычисляется она с помощью формулы:

    В данном примере мы рассмотрим квадрат три на три, поэтому формула будет выглядеть так (n — число столбцов):

    Итак, перед нами квадрат. Первое, что надо сделать — это вписать цифру один в центре первой строки сверху. Все последующие цифры необходимо располагать на одну клетку правей по диагонали.

    Но тут сразу встает вопрос, как решить магический квадрат? 3 класс вряд ли использовал данный метод, да и у большинства появится проблема, как это сделать таким способом, если данной клетки нет? Чтобы сделать все правильно, необходимо включить воображение и дорисовать аналогичный магический квадрат сверху и получится так, что число 2 будет находиться в нем в нижней правой клетке. Значит, и в наш квадрат мы вписываем двойку в то же место. Это означает, что нам необходимо вписать цифры так, чтобы в сумме они давали значение 15.

    Последующие цифры вписываются точно так же. То есть 3 будет находиться в центре первого столбца. А вот 4 по такому принципу вписать не удастся, так как на ее месте уже стоит единица. В таком случае цифру 4 располагаем под 3, и продолжаем. Пятерка — в центре квадрата, 6 — в правом верхнем углу, 7 — под 6, 8 — в верхний левый и 9 — по центру нижней строки.

    Вы теперь знаете, как решить магический квадрат. 3 класс Демидова проходил, но у этого автора были чуть попроще задания, однако, зная данный способ, удастся разгадать любую подобную задачу. Но это, если число столбцов нечетное. А что же делать, если у нас, например, квадрат 4 на 4? Об этом дальше по тексту.

    Второй способ. Для квадрата двойной четности

    Квадратом двойной четности называют тот, у которого количество столбцов можно разделить и на 2, и на 4. Сейчас мы рассмотри квадрат 4 на 4.

    Итак, как решить магический квадрат (3 класс, Демидова, Козлова, Тонких — задание в учебнике математики), когда количество его столбцов равно 4? А очень просто. Проще, чем в примере до этого.

    В первую очередь находим магическую константу по той же формуле, что приводилась в прошлый раз. В данном примере число равно 34. Теперь надо выстроить цифры так, чтобы сумма по вертикали, горизонтали и диагонали была одинаковой.

    В первую очередь надо закрасить некоторые ячейки, сделать это вы можете карандашом или же в воображении. Закрашиваем все углы, то есть верхнюю левую клеточку и верхнюю правую, нижнюю левую и нижнюю правую. Если квадрат был бы 8 на 8, то закрашивать надо не одну клеточку в углу, а четыре, размером 2 на 2.

    Читать еще:  Богородично-рождественская девичья пустынь в селе барятино епархиальный женский монастырь. Семь закатов в барятино, или зачем мирянину ехать в монастырь Барятинский женский монастырь

    Теперь необходимо закрасить центр этого квадрата, так, чтобы его углы касались углов уже закрашенных клеточек. В данном примере у нас получится квадрат по центру 2 на 2.

    Приступаем к заполнению. Заполнять будем слева направо, в том порядке, в котором расположены ячейки, только вписывать значение будем в закрашенные клетки. Получается, что в верхний левый угол вписываем 1, в правый — 4. Потом центральный заполняем 6, 7 и дальше 10, 11. Нижний левый 13 и правый — 16. Думаем, порядок заполнения понятен.

    Остальные ячейки заполняем точно так же, только в порядке убывания. То есть так как последняя вписанная цифра была 16, то вверху квадрата пишем 15. Далее 14. Потом 12, 9 и так далее, как показано на картинке.

    Теперь вы знаете второй способ, как решить магический квадрат. 3 класс согласится, что квадрат двойной четности намного легче решается, чем другие. Ну а мы переходим к последнему способу.

    Третий способ. Для квадрата одинарной четности

    Квадратом одинарной четности называется, тот квадрат, число столбцов которого можно разделить на два, но нельзя на четыре. В данном случае это квадрат 6 на 6.

    Итак, вычисляем магическую константу. Она равна 111.

    Теперь нужно наш квадрат визуально поделить на четыре разных квадрата 3 на 3. Получится четыре маленьких квадрата размером 3 на 3 в одном большом 6 на 6. Верхний левый назовем А, нижний правый — В, верхний правый — С и нижний левый — D.

    Теперь необходимо каждый маленький квадрат решить, используя самый первый способ, что приведен в этой статье. Получится так, что в квадрате А будут числа от 1 до 9, в В — от 10 до 18, в С — от 19 до 27 и D — от 28 до 36.

    Как только вы решили все четыре квадрата, работа начнется над А и D. Необходимо в квадрате А визуально или при помощи карандаша выделить три ячейки, а именно: верхнюю левую, центральную и нижнюю левую. Получится так, что выделенные цифры — это 8, 5 и 4. Точно так же надо выделить и квадрат D (35, 33, 31). Все, что остается сделать, это поменять местами выделенные цифры из квадрата D в А.

    Теперь вы знаете последний способ, как можно решить магический квадрат. 3 класс квадрат одинарной четности не любит больше всего. И это неудивительно, из всех представленных он самый сложный.

    Вывод

    Прочтя данную статью, вы узнали, как решить магический квадрат. 3 класс (Моро — автор учебника) предлагает подобные задачи только с несколькими заполненными ячейками. Рассматривать его примеры нет смысла, так как зная все три способа, вы с легкостью решите и все предлагаемые задачи.

    Как работает магический квадрат? Упрощенные квадратные корни.

    Предмет математики настолько серьезен, что нужно не упускать случая делать его немного занимательным.

    § 1. Магические квадраты. Исторические сведения

    Среди различных занимательных вопросов теории чисел одним из интереснейших являются вопросы, связанные с магическими (волшебными) квадратами.

    Тайна древнего талисмана

    В Европе они появились в XIV веке. Или в XV . Мнения расходятся. Но и так, и этак – давние были времена.

    Еще до своего появления в Европе они существовали века и десятки веков. Неизвестно, какая из древних цивилизаций была их родиной, неизвестна страна, неизвестен век, даже тысячелетие нельзя установить точно. Известно только, что эти талисманы появились до нашей эры и что их родиной был Древний Восток.

    С незапамятных времен, научившись считать, люди познали меру количества – число. Вглядываясь в сочетания чисел, они с изумлением увидели, что числа имеют какую-то самостоятельную жизнь, удивительную и полную тайны; тайны необъяснимой и поэтому загадочной и многозначительной.

    Оказалось, что, складывая различные числа, можно получить одно и то же число. Оказалось также, что, располагая эти числа правильными рядами, один под другим, в случае удачи, можно, складывая числа слева направо и сверху вниз, каждый раз получать одно и то же число. Наконец, кто-то придумал разделить числа линиями так, что каждое число оказалось в отдельной клетке. Так посвященные увидели квадрат, населенный числами, неизвестно что сулящий его владельцу, но, конечно, обладающий магической силой. Квадрат можно было резцом высечь на камне, тростниковым камышом написать на пергаменте, кончиком кисти, смоченным в растертой туши, нарисовать на бумаге, рыхлой и слабой.

    Квадрат можно было продать верующим. Зашитый в ладанку, он становился амулетом и (конечно!) защитой его владельца от всякого зла.

    В Китае квадрат 3х 3 называют Ло-Шу. И по сей день его можно увидеть на амулетах, которые носят в Восточной Азии и в Индии, и на многих пассажирских судах, где он украшает крышки столиков для карточных игр.

    Некоторые представления о том, каких фантастических размеров достигали сочинения о магических квадратах (предмете, не имеющем сколько-нибудь принципиального значения), можно получить из того факта, что французский трактат на эту тему, выпущенный в 1838 году, когда о магических квадратах было известно намного меньше, чем теперь, вышел в трех объемистых томах.

    С давних времен и поныне исследование магических квадратов процветало как своеобразный культ, часто не без мистического тумана. Среди лиц, занимавшихся их изучением, были и известные математики, как Артур Кели и Освальд Веблен, Леонард Эйлер и такие любители, как, например, Бенджамин Франклин.

    Магический квадрат – это квадрат, разделенный на клетки (их количество одинаково по горизонтали и вертикали). Клетки заполнены числами от 1 до n 2 (nпорядок квадрата, то есть количество клеток по горизонтали или по вертикали) так, что сумма чисел во всех горизонтальных, вертикальных рядах и на главных диагоналях равна одному и тому же числу. Это число называется магической суммой (постоянной) квадрата и вычисляется по формуле:

    Магических квадратов порядка 2 не существует, а порядка 3 существует только один (если не считать магических квадратов, получающихся из него при поворотах и отражениях), постоянная которого равна 15.

    Как только переходим к порядку 4, сложность магических квадратов резко возрастает. Если и на этот раз не считать различными квадраты, которые можно перевести друг в друга поворотами и отражениями, то различных магических квадратов будет ровно 880 типов, причем многие из них будут даже «более магическими», чем это требуется по определению магического квадрата.

    В начале XVI века магический квадрат был увековечен в искусстве. Знаменитый немецкий художник и гравер Альбрехт Дюрер выпустил в 1514 году гравюру, названную им «Меланхолия». На заднем плане гравюры, над фигурой крылатой женщины в одежде горожанки, помещен магический квадрат четвертого порядка.

    Во времена Дюрера меланхолический темперамент считался свойственным творческому гению, он был уделом ученых мужей, «чья бледность – печать глубокой мысли». Прекрасная женщина Меланхолия на гравюре Дюрера, возможно, олицетворяет гений человеческой мысли, человеческого труда. Именно ему (гению) угрожает планета меланхоликов Сатурн.

    Астрологи эпохи Возрождения связывали магические квадраты четвертого порядка с Юпитером. Такие квадраты считались действенным средством от меланхолии (поскольку Юпитер и Сатурн, если верить астрологам, враждовали между собой).

    Вот поэтому в правом верхнем углу гравюры Дюрера изображен магический квадрат именно четвертого порядка.

    Дюреровский квадрат симметричен, так как сумма любых двух входящих в него чисел, расположенных симметрично относительно его центра, равна 17.

    Способ построения симметричных квадратов очень прост: вписать по порядку числа от 1 до 16 в клетки квадрата 4 ´ 4, а затем поменять местами числа, расположенные на главных диагоналях, относительно центра, и симметричный квадрат готов.

    Дюрер переставил у своего квадрата два соседних столбца (что не повлияло на свойства квадрата) так, что числа в двух средних клетках нижней строки стали указывать дату создания гравюры: 1514.

    Древнейший из дошедших до нас квадратов четвертого порядка был обнаружен в надписи XI или XII века, найденной в Кхадружен (Индия). Этот магический квадрат относится к разновидности так называемых «дьявольских» квадратов.

    Так что же определяет интерес к магическим квадратам в наше время?

    А. Обри: «. ценность теории определяется не только возможностью ее практического использования, для которого она разработана, но также ее способностью воспитывать наш ум, доставлять ему питание, поддерживающее его жизнь, везде отыскивать новые истины и выяснять их значение без помощи извне. С этой точки зрения изучение магических квадратов, не требуя глубоких знаний, представляет собой превосходную умственную гимнастику, развивающую способность понимать идеи разрешения, сочетания, симметрии, обобщения и т. д. Можно сказать, что эта умственная гимнастика включает такие теоретические построения, занимаясь которыми упражняется ум.

    С другой стороны, . естественная красота, которую содержат магические квадраты, многократно встречающаяся и разнообразная, достаточна для того, чтобы привлечь любителей. »

    § 2. Классические алгоритмические методы построения магических квадратов

    2.1. Индийский метод построения магических квадратов нечетного порядка

    1 ° . Числа от 1 до n 2 поочередно вписываются в клетки основного квадрата.

    2 ° . Если некоторое правило требует вписать данное число в клетку, лежащую вне основного квадрата, то вместо этого рассматриваемое число вписывается в эквивалентную клетку основного квадрата.

    3 ° . Число 1 вписывается в среднюю клетку верхнего ряда, то есть в клетку с координатами (m, 2m).

    4 ° . Если число z вписано в клетку с координатами (х, у), то следующее число z+1 вписывается в клетку с координатами (х+1, у+1), то есть в клетку, смежную с клеткой (х, у), в направлении восходящей диагонали (при условии, что эта последняя клетка еще свободна от чисел).

    5 ° . Если клетка с координатами (х+1, у+1) уже занята некоторым числом, то число z+1 вписывается в клетку с координатами (х, у-1), то есть в клетку, непосредственно примыкающую снизу к клетке (х, у).

    На рисунке изображен магический квадрат третьего порядка. Для ясности на этом рисунке заполнены также некоторые клетки вне основного квадрата.

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector