0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большой взрыв и происхождение Вселенной. Загадки Вселенной: что было во Вселенной до Большого взрыва

Содержание

Что было до Большого взрыва? [Fraser Cain]

Считается, что Вселенная произошла в результате Большого Взрыва. Задумывались ли вы в результате чего произошел сам Большой Взрыв? Фрейзер Кейн приоткроет для вас завесу этой тайны.

Примерно тринадцать и восемь миллиардов лет назад Вселенная родилась в результате взрыва. Она с ноги открыла дверь, достала сыр и кубики льда, поставила огромную чашу с пуншем и пригласила всех соседей на вечеринку, да еще какую — всем вечеринкам вечеринку, до конца времен.

А что происходило до этого? Что было до Большого Взрыва?

Рассматривая историю Вселенной, мы берем Большой Взрыв за точку отсчёта и изучаем всё, что было после. Точно также и совсем иначе, чем Вселенную видят астрономы, оглядываясь назад из настоящего.

Всё, что мы можем отсюда различить — это реликтовое излучение, появившееся через триста восемьдесят тысяч лет после Большого Взрыва. До него ничего разглядеть невозможно, Вселенная была непрозрачно плотной и горячей. Как гороховый суп. Суп из вкуснейшего, обжигающего, калорийного “всего”.

В ущербной, традиционной, земной системе координат, без ТАРДИС, мы не в состоянии увидеть происхождение Вселенной со своего места в пространстве и времени. Черт тебя побери, наше место в пространстве и времени! К счастью, нашлись умники, озвучившие некоторые гипотезы — местами шальные, местами уму непостижимые, бредовые все без исключения.

Мысль первая: всё началось как своеобразное квантовое колебание, расширившееся до современной вселенной. Нечто совершенно неуловимое, разрастаясь со временем, породило, как побочный продукт, наше существование.

Альтернативная версия: наша вселенная зародилась в чёрной дыре более древней вселенной. Задумайтесь об этом. Проварите в своем котелке. Была какая-то вселенная прямо здесь, но не наша вселенная, потом она стала чёрной дырой. А из этой дыры родились мы и ВСЁ вокруг нас. Буквально, всё, что мы видим, куда ни поглядим, и всё, что существует пока только в нашем воображении.

Вот вам ещё идея: мы постоянно наблюдаем появление новых частиц во Вселенной. А что если, по прошествии долгого времени, целая армия частиц, так чтобы хватило на вселенную, появилась одномоментно? Серьёзно… А сначала долго-долго скапливались множества “недовселенных”, которым не везло.

Совсем недавно команда БАЙСЕП-ДВА обнаружила вероятные свидетельства инфляции ранней вселенной. Их выводы, как все заявления подобного масштаба, вызвали жёсткую полемику. Если версия инфляции верна, наша вселенная может являться частью бОльшей мультивселенной. И самый популярный вариант этой версии предполагает вечное расширение, при котором вселенные появляются постоянно. А наша оказалась одной из них случайно.

Возможно, спрашивать, что было до Большого Взрыва — всё равно, что спрашивать, что севернее Северного Полюса. Может быть, в наличие первопричины нас заставляет верить выбранный нами ракурс? Нам хочется думать, что у явлений должна быть причина, но вдруг Вселенная — исключение? Может, она просто есть. Потому что.

Придумайте сами. Что было до начала вечеринки? Расскажите нам в комментариях.

masterok

Мастерок.жж.рф

Хочу все знать

Давайте скажем честно: довольно странно думать о том, будто история Вселенной началась со своеобразного дня рождения 13,8 миллиарда лет тому назад. Это соответствует многим религиозным постулатам, согласно которым космос был создан благодаря вмешательству свыше, хотя наука ничего об этом не говорит.

Что случилось до начала времени?

Если все произошедшее имеет причинно-следственную связь, то что вызвало возникновение Вселенной? Чтобы ответить на очень сложный вопрос о Первопричине, в религиозных мифах о сотворении мира используют то, что антропологи культуры порой называют «позитивным бытием» или сверхъестественным явлением. Поскольку у времени в какой-то момент в далеком прошлом было начало, Первопричина должна быть особенной. Это должна быть беспричинная причина, явление, которое просто произошло, и ему ничто не предшествовало.

Но если приписывать начало всего Большому взрыву, напрашивается вопрос: а что было до этого? Когда мы имеем дело с бессмертными богами, это совсем другое дело, так как для них неподвластность времени не вопрос. Боги существуют вне времени, а мы нет. Для нас нет такого понятия как «до времени». Следовательно, если задать вопрос, что происходило до Большого взрыва, он будет в определенной степени бессмысленным, даже если нам необходимо найти смысл. Стивен Хокинг как-то раз приравнял его к вопросу «Что находится севернее Северного полюса?» А мне нравится фраза «Кем вы были до рождения?»

Аврелий Августин выдвинул гипотезу о том, что время и пространство появились вместе с сотворением мира. Для него это был, конечно же, божий промысел. А для науки?

В науке мы, чтобы понять, как Вселенная зарождалась, развивалась и взрослела, возвращаемся назад во времени, пытаясь реконструировать происходившее. Подобно палеонтологам, мы идентифицируем «окаменелости», то есть остатки вещества из давно минувших дней, а потом с их помощью узнаем о существовавших в те времена различных физических явлениях.

Мы с уверенностью исходим из того, что Вселенная расширяется на протяжении миллиардов лет, и что этот процесс продолжается сейчас. В данном случае «расширение» означает, что расстояния между галактиками увеличиваются; галактики отдаляются друг от друга со скоростью, зависящей от того, что было внутри Вселенной в разные эпохи, то есть, какая материя заполняла пространство.

Большой взрыв не был взрывом

Когда мы говорим о Большом взрыве и расширении, мы представляем себе взрыв, положивший начало всему. Поэтому мы его так и назвали. Но это неверное представление. Галактики удаляются друг от друга, потому что их буквально разводит растяжение самого пространства. Подобно эластичной ткани, пространство растягивается и несет с собой галактики, как течение реки уносит с собой бревна. Так что галактики нельзя назвать осколками, разлетающимися от взрыва. Не было никакого центрального взрыва. Вселенная расширяется во всех направлениях, и она вполне демократична. Каждая точка важна в одинаковой степени. Кто-то в далекой галактике видит удаление других галактик так же, как и мы.

(Примечание: У близких к нам галактик есть отклонения от этого космического потока, которые называются «локальным движением». Это вызвано гравитацией. Например, Туманность Андромеды приближается к нам.)

Возвращение в прошлое

Если крутить космическое кино назад, мы увидим, как материя все больше и больше сдавливается в сокращающемся пространстве. Температура растет, давление увеличивается, и начинается распад. Молекулы распадаются на атомы, атомы на ядра и электроны, атомные ядра на протоны и нейтроны, а затем протоны и нейтроны на кварки. Такое последовательное разложение материи на самые базовые и элементарные составные части происходит по мере того, как часы тикают в обратном направлении в сторону взрыва.

Например, атомы водорода распадаются примерно за 400 000 лет до Большого взрыва, ядра атомов примерно за одну минуту, а протоны с нейтронами за сотую долю секунды (при просмотре в обратном направлении, конечно). Откуда это нам известно? Мы нашли остатки радиации из того времени, когда сформировались первые атомы (реликтовое микроволновое фоновое излучение), и выяснили, как возникли первые ядра легких атомов, когда Вселенной было всего несколько минут от роду. Это как раз те космические окаменелости, которые показывают нам путь в обратном направлении.

В настоящее время мы в ходе экспериментов можем смоделировать условия, существовавшие в тот момент, когда возраст Вселенной составлял одну триллионную долю секунды. Нам это может показаться ничтожно малой величиной, однако для световой частицы фотона это продолжительное время, позволяющее ему пролететь расстояние, в триллион раз превышающее диаметр протона. Когда мы говорим о ранней Вселенной, нам следует забыть про человеческие мерки и представления о времени.

Безусловно, мы хотим как можно ближе подобраться к моменту, когда время было равно 0. Но в какой-то момент мы утыкаемся в стену незнания и можем лишь экстраполировать свои нынешние теории в надежде на то, что они дадут нам хоть какие-то намеки на происходившее в начале времени, при таких энергиях и температурах, которые мы не можем создать в лаборатории. Но одно мы знаем наверняка. Когда время близко к 0, наша нынешняя теория о свойствах пространства и времени, какой является общая теория относительности Эйнштейна, не действует.

Это сфера квантовой механики, в которой расстояния настолько малы, что мы должны представлять себе пространство не как непрерывный лист, а как зернистую структуру. К сожалению, у нас нет качественной теории, описывающей такую зернистость пространства, как нет и физических законов гравитации в квантовом масштабе (известной как квантовая гравитация). Кандидаты, конечно, есть, например, теория суперструн и петлевая квантовая гравитация. Но в настоящее время отсутствуют доказательства того, что они верно описывают физические явления.

Квантовая космология не дает ответ на вопрос

Тем не менее, любознательность человека требует приблизить границы к нулевому значению времени. Что можно сказать? В 1980-х годах Александр Виленкин, Андрей Линде и Джеймс Хартл со Стивеном Хокингом предложили три модели квантовой космологии, в которых Вселенная существует как атом, а уравнение похоже на то, что используется в квантовой механике. В этом уравнении вселенная есть волна вероятности, которая по сути дела связывает вневременную квантовую область с классической, где есть время, то есть, со вселенной, в которой мы обитаем, и которая сейчас расширяется. Переход от кванта к классике буквально означает возникновение космоса, то, что мы называем Большим взрывом. Таким образом, Большой взрыв является беспричинной квантовой флуктуацией, такой же случайной, как радиоактивный распад: от отсутствия времени к его присутствию.

Если исходить из того, что одна из этих простых моделей верна, будет ли она научным объяснением Первопричины? Можем ли мы вообще избавиться от необходимости существования причины, пользуясь вероятностями квантовой физики?

К сожалению, нет. Конечно, такая модель стала бы поразительным интеллектуальным подвигом. Это был бы колоссальный шаг вперед в понимании происхождения всего. Но этого недостаточно. Наука не может существовать в вакууме. Ей нужен понятийный аппарат, такие понятия как пространство, время, материя, энергия. Ей нужны расчеты, нужны законы сохранения таких величин как энергия и количество движения. Из идей небоскреб не построишь, как не создашь модель без понятий и законов. Требовать от науки «объяснений» Первопричины — все равно что просить ее объяснить собственную структуру. Это просьба представить научную модель, в которой не используются прецеденты, нет более ранних концепций, которыми можно оперировать. Наука не может этого сделать, как человек не может думать без мозга.

Загадка Первопричины остается неразгаданной. В качестве ответа можно выбрать религию и веру, а еще можно считать, что наука со временем все разгадает. Мы также можем, подобно древнегреческому скептику Пиррону, смиренно признать, что существуют пределы нашего познания. Мы можем радоваться достигнутому и продолжать постигать, осознавая при этом, что нет необходимости знать все и понимать все. Достаточно того, что мы продолжаем пытливо интересоваться.

Любознательность без загадки слепа, а загадка без любознательности ущербна.

Марчело Глейзер (Marcelo Gleiser)

Что было до Большого взрыва?

Новости партнеров

Команда американских астрофизиков предложила новый способ проверки инфляционной модели Вселенной, заключающийся в поиске сигналов «стандартных часов», генерируемых любым типом тяжелых частиц в «первичной вселенной». Описание метода принято к публикации в журнале Physical Review Letters.

«Конечной целью нашей работы является получение ответа на вопрос: какой была Вселенная до Большого взрыва?» – пишут авторы исследования.

Инфляционная модель Вселенной, говорящая о стремительном расширении пространства за долю секунды сразу после Большого взрыва, помогает разрешить некоторые важные вопросы о структуре и эволюции космоса, однако другие, сильно отличающиеся от нее теории также могут объяснить эти загадки, хотя и иным способом.

«В некоторых неинфляционных теориях Вселенная, предшествующая Большому взрыву, так называемая «первичная вселенная», сокращалась, и, таким образом, Большой взрыв был частью Большого отскока. Чтобы разобраться в этом вопросе, необходимо в первую очередь доказать ложность инфляционной модели, однако ее кажущаяся бесконечная адаптивность к данным делает практически невозможным ее надлежащее тестирование», – отмечают исследователи.

В настоящее время ситуация с инфляцией такова, что это очень гибкая идея, которую нельзя опровергнуть экспериментально. Независимо от того, какие данные астрономы получают в рамках наблюдений и какие несоответствия находят, у теоретиков всегда есть некоторые модели инфляции, способные это объяснить.

Поэтому астрофизики из Гарвардского университета (США) решили пойти от обратного и разработали идею «первичных стандартных часов», применяемую к неинфляционным теориям, которая потенциально может привести к экспериментальному опровержению инфляции. Она опирается на основополагающее свойство различных моделей – эволюцию размера первичной вселенной.

Читать еще:  Почему мы почитаем трех святителей в один день?

«Например, во время инфляции вселенная растет в геометрической прогрессии. В некоторых альтернативных теориях она сокращается. В одних вселенная делает это очень медленно, а в других быстро. Параметры, которые ранее были предложены для измерения в пользу каждой из теорий, обычно свойственны нескольким из них и не позволяют сделать однозначный вывод, так как не имеют прямого отношения к изменению размера первичной вселенной. Мы же хотели понять, какие наблюдаемые характеристики можно напрямую связать с этим фундаментальным свойством», – рассказывает Синь Чен, ведущий автор исследования.

Сигналы, генерируемые первичными стандартными часами, должны стать ключом к разгадке. Этот хронометр может быть «создан» любым типом тяжелых элементарных частиц в первичной вселенной. Такие частицы присущи всем конкурирующим теориям, и их колебания с некоторой регулярной частотой во многом напоминают движение маятника.

Первичная вселенная не была полностью однородной и содержала крошечные неравномерности в плотности, ставшие в итоге семенами крупномасштабных структур в современной Вселенной. Это свойство, по мнению исследователей, является основным источником информации, который поможет узнать, что было до Большого взрыва, так как тиканье стандартных часов генерировало сигналы, отпечатавшиеся в этих сгустках, при этом разные теории первичной вселенной предсказывают индивидуальные для себя типы сигналов из-за различных эволюционных путей пространства.

«Если мы представим всю информацию о том, что произошло до Большого взрыва, в виде кадров фильма, то стандартные часы должны рассказать нам, как его смотреть. Без какой-либо информации о них мы не знаем, должен ли фильм воспроизводиться вперед или назад, быстро или медленно, точно также, как мы не можем сказать, расширялась или сжималась первичная вселенная, и как быстро она это делала. Стандартные часы ставят метки времени на каждом из этих кадров, отснятых до Большого взрыва, и говорят нам, как проигрывать фильм», – добавил Синь Чен.

Астрофизики рассчитали, как эти стандартные тактовые сигналы должны выглядеть в неинфляционных теориях, и предложили метод их поиска.

«Если мы сможем найти набор сигналов, указывающих на сжатие первичной вселенной, это уничтожит все инфляционные теории. Однако их будет очень трудно обнаружить, поэтому нам, возможно, придется заглянуть во многие отдаленные уголки космоса. Реликтовое излучение – одно из таких мест, распределение галактик во Вселенной – другое. Мы уже приступили к поискам, и у нас есть несколько интересных кандидатов, но нам нужно больше данных», – заключил Синь Чен.

Ученые отмечают, что будущие миссии, такие как телескоп «Large Synoptic Survey Telescope», космическая обсерватория «Euclid» и недавно одобренный проект «SphereX», предоставят высококачественные данные, которые могут быть использованы для экспериментальной проверки инфляционной модели Вселенной.

Большой взрыв и происхождение Вселенной

  • Теория большого взрыва
  • Современное представление о возникновении Вселенной
  • Хронология событий в теории Большого взрыва
  • Эпоха сингулярности
  • Планковская эпоха
  • Эпоха великого объединения
  • Эпоха инфляции
  • Электрослабая эпоха
  • Кварковая эпоха
  • Андронная эпоха
  • Лептонная эпоха
  • Протонная эпоха
  • Темные века
  • Реионизация
  • Эра вещества
  • Будущее Вселенной
  • Основные теории происхождения Вселенной

Происхождение Вселенной остается одной из главных загадок науки. С начала наблюдений за звездным небом человечество пыталось понять, как возникло все, что его окружает, и что там за пределами нашего мира. С развитием технологий ему покорились многие природные явления и даже просторы космоса, но никто так до сих пор и не установил, как зародилась Вселенная. Однако, астрономы выдвинули множество теорий на этот счет, некоторые из них вполне логичны и правдоподобны.

Теория большого взрыва

Основной теорией возникновения Вселенной в ее нынешнем состоянии является теория большого взрыва. Впервые этот термин был применен британским астрономом Ф. Хойлом в 1949 году. При этом сам ученый считал данное предположение о происхождении и эволюции Вселенной ошибочным.

Сами же идеи о расширении Вселенной и ее развитии в результате взрывного процесса возникли в начале 20 века. Способствовал этому Альберт Эйнштейн, опубликовавший свою теорию относительности. Нестационарное решение его гравитационного уравнения натолкнуло советского физика Фридмана на гипотезу о том, что Универсум – постоянно расширяющийся объект. По его версии, вначале она представляла собой очень плотное, однородное вещество. Оно в результате большого взрыва начало распространяться, образуя привычные нам элементы космоса – галактики, туманности, звезды, планеты и другие тела.

Теория происхождения Вселенной по Фридману неоднократно подвергалась дополнениям и улучшениям. В 1948 году астрофизик Георгий Гамов опубликовал работу, в которой описывал первичное вещество до Большого взрыва не только как очень плотное, но и как очень горячее. В нем постоянно происходили реакции термоядерного синтеза, в результате которых образовались ядра легких химических элементов. Выделяемое при этом электромагнитное излучение сохранилось до сих пор, но в остывающем виде. Теория была подтверждена почти через 20 лет после того, как ученым удалось открыть и измерить температуру космического фона. Изучение реликтового излучения также помогла установить возраст мироздания и распределение в нем вещества.

Современное представление о возникновении Вселенной

  • Теория Большого взрыва – описывает то, что стало пусковым механизмом расширения первичной материи.
  • Инфляционная теория – рассматривает причины расширения вещества.
  • Модель расширения Фридмана – описывает процессы распределения материи в пространстве.
  • Иерархическая теория – описывает возникновение всех структур космоса.

Хронология событий в теории Большого взрыва

Теория эволюции Вселенной подразумевает, что до Большого взрыва все мироздание находилось в принципиально другом состоянии. А после – проходило стадии развития, благодаря которым заполнилось частицами, химическими элементами и другими структурами. Они же послужили строительным материалом для всех космических тел и объектов. Каждый эпоха развития имеет свою продолжительность от незначительных долей секунды до миллиардов лет. Попробуем изложить теорию происхождения Вселенной кратко и простым языком.

Эпоха сингулярности

Большому взрыву и происхождению Вселенной в современном ее виде предшествовала стадия космологической сингулярности. Это состояние Универсума, при котором вещество имеет почти бесконечные значения плотности и температуры, а само оно стремится к нулю.

Космологическая сингулярность – один из самых трудных вопросов современной науки. Невозможно точно установить, что именно было до Большого взрыва. Но бесконечная плотность раннего вселенского вещества не может сопровождаться его бесконечной температурой. Следовательно, сингулярная Вселенная противоречит современным законам физики.

По некоторым предположениям, эпохи сингулярности вообще не существовало. Еще по предположению группы ученых, в число которых входит С.Хокинг, все сущее могло возникнуть из абсолютного вакуума («ничего») из-за колебаний системы. По другой теории, Большой взрыв привел лишь к образованию Метагалактики, как «пузырька» в плотном веществе Универсума. Есть также гипотеза о том, что вселенные образуются из-за разрывов сингулярности в пределах черных дыр. Доподлинно же установить, что было до Большого взрыва, не представляется возможным.

Планковская эпоха

Итак, в первичном мироздании произошел катастрофический процесс, в результате которого вещество начало стремительно расширяться и охлаждаться. При чем для формирования всех структур космического пространства взрыв должен был произойти повсюду. Это и является точкой отчета возникновения мироздания в его нынешнем виде.

В период от нуля до 10 -43 секунд вещество Универсума имело физические параметры (температура, энергия, плотность) соответствующие постоянным Планка. В таких условиях планковской эпохи произошло рождение частиц.

Эпоха великого объединения

В период с 10 -43 по 10 -35 секунд после Большого взрыва в относительно устойчивой системе возникли силы гравитации. Они впоследствии способствовали возникновению звезд и планет. Первичная материя перестала быть однородно плотной. Но электромагнитное и ядерное взаимодействия в ней были еще объединены, поэтому любые физико-химические параметры для этого вещества не имеют смысла.

Эпоха инфляции

При переходе в эту стадию эволюции Вселенная начала ускоренно расширяться. Это позволило перераспределиться высокоплотному изотропному первичному веществу. Эпоха заняла промежуток времени с 10 -35 по 10 -32 секунды от взрывного процесса.

Электрослабая эпоха

К этому моменту сильное ядерное взаимодействие, как и гравитация, отделено от первичной материи. Период с 10 -32 по 10 -12 секунд – момент рождения таких элементарных частиц, как хиггсовский бозон и W-, Z-частицы. Симметрия до вселенского вещества окончательно разрушена.

Кварковая эпоха

С 10 -12 по 10 -6 секунд все четыре фундаментальные взаимодействия начинают существовать отдельно. Все вещество Универсума представляет собой «кварковый суп» из безмассовых и бесструктурных фундаментальных частиц.

Андронная эпоха

Из фундаментальных частиц начали образовываться андроны – частицы с сильным ядерным взаимодействием. Именно из них образуются нуклоны, формирующее атомные ядра, протоны и нейтроны. Весь процесс андронизации занял порядка ста секунд после Большого взрыва.

Лептонная эпоха

Первые три минуты существования Универсума происходит формирование лептонов, в том числе и их подвида – нейтрино. Это еще одни фундаментальные структуры вселенского вещества, из которых в дальнейшем было построено все в мироздании.

Протонная эпоха

Более 300 тысяч лет ушло на первичный процесс нуклеосинтеза легких химических элементов и перераспределения вещества Универсума. Оно стало доминировать над излучением, что замедлило расширение космического пространства. Конец данной стадии ознаменовался возможностью передвижения тепловых фотонов.

Темные века

Ни одной привычной нам космической структуры в первые 500 млн. лет после возникновения Вселенной не существовало. Она была заполнена водородно-гелиевой массой и реликтовым тепловым излучением, распространяющимся по всему ее пространству.

Реионизация

Постепенно облака водорода и гелия под воздействием гравитации начали сжиматься, в них стали зарождаться процессы термоядерного синтеза. Появились первые звезды. Они стали собираться в скопления, называемые галактиками. В центре формирующихся галактик возникал источник мощнейшего излучения и гравитационного притяжения – квазар. Этот процесс занял более 300 млн. лет.

Эра вещества

Молодые звезды формируют вокруг себя протопланетные диски, из которых впоследствии образовываются целые планетарные системы. В эту эру 4,6 млрд. лет назад возникла и Солнечная система со всеми окружающими ее планетами. Вся же история Вселенной продолжается более 13,7 млрд.лет.

Будущее Вселенной

Теория возникновения Вселенной путем Большого взрыва официально признана в научном мире. Согласно ее основным утверждениям, космическое пространство все еще продолжает эволюционировать и на смену одним структурам приходят абсолютно новые. Существуют две противоположные версии дальнейшего развития событий:

  • Большой разрыв. Если Универсум и дальше продолжит расширяться, то в дальнейшем гравитационное взаимодействие между его элементами начнет стремительно ослабевать. Произойдет распад галактик и их скоплений. После этого распадутся отдельные звездные системы, где гравитация звезды не в силах будет удержать планеты вокруг себя. Постепенно все элементы Вселенной разрушаться вновь до элементарных частиц, законы физики перестанут иметь смысл. Что произойдет дальше – предсказать невозможно.
  • Большое сжатие. В этом сценарии описывается предположение, что космическое пространство постепенно замедлит свое расширение и начнет обратно сжиматься. Все его элементы образуют единое мега скопление, в котором будет продолжаться процессы рождения, эволюции и смерти галактик. Однако, вещество будет сжиматься и далее, что приведет к образованию одной гигантской галактики. Космическое пространство вновь начнет нагреваться, реликтовое излучение разрушит планеты и звезды. Все структуры перейдут в состояние элементарных частиц. Вселенная приобретет свой первоначальный вид до Большого взрыва.

Любой из основных сценариев смерти Вселенной в нынешнем ее состоянии предполагает распад всех ее структур до фундаментальных частиц и прекращения любых сил взаимодействия. Так ли оно будет на самом деле, предсказать современной науке невозможно.

Основные теории происхождения Вселенной

Большой взрыв не единственное современное представление о происхождении и эволюции Вселенной. Научный мир знает множество теорий возникновения мира, основными из которых являются:

  • Теория струн. Ее основное утверждение заключается в том, что все существующее состоит из мельчающих энергетических нитей. Такие квантовые струны могут растягиваться, искривляться и располагаться в любых направлениях, что делает космическое пространство многомерным. И каждое из этих измерений имеет свою эволюционную стадийность.
  • Теория стационарной Вселенной. По этой версии, в расширяющемся пространстве космоса постоянно возникает новая материя, что делают всю систему стабильной. Идея была популярна в середине 20-го века, но после открытия и изучения реликтового излучения у нее практически не осталось сторонников.

Не исключено, что все предположения о возникновении мироздания, признанные сейчас в научном мире, не будут опровергнуты в будущем. И чем дальше и дольше человечество исследует космические просторы, тем больше новых ответов и вопросов оно находит.

Что было до Большого взрыва?

Что было до Большого взрыва?

Мир не существует вечно. Он родился в пламени Большого взрыва. Но было ли это уникальным явлением в истории космоса? Или повторяющимся событием, вроде рождения звезд и планет? Что если Большой взрыв – лишь фаза перехода из одного состояния Вечности в другое?

Многие физики говорят о том, что изначально было Нечто, а не Ничто. Быть может, наша Вселенная, – как и другие, – родилась из элементарного квантового вакуума. Но как ни «минимально просто» подобное состояние, – а меньше, чем квантовый вакуум, не дозволяют быть законы физики, – его нельзя все же именовать «Ничто».

Может быть, видимая нами Вселенная – лишь очередное агрегатное состояние Вечности? А причудливое расположение галактик и галактических скоплений – что-то вроде кристаллической решетки, которая в n-мерном мире, существовавшем до рождения нашей Вселенной, имела совсем иную структуру и которая может быть предсказана «формулой всего», разыскивавшейся еще Эйнштейном? И будет ли она найдена в ближайшие десятилетия? Ученые напряженно вглядываются сквозь стену Неведомого, оградившего наше мироздание, пытаясь понять, что же было за мгновение до того, как, по привычным для нас представлениям, не было ровным счетом ничего. Какие формы Вечного космоса можно вообразить, наделив время и пространство теми качествами, которые немыслимы в нашем мироздании?

Читать еще:  Храм царицы хатшепсут краткое описание. Храм Хатшепсут в Луксоре — заупокойный храм царицы в Дейр эль-Бахри

Большой взрыв?– лишь фаза перехода из одного состояния Вечности в другое

Среди самых многообещающих теорий, в которые физики пытаются втиснуть целую Вечность, можно назвать теорию квантовой геометрии, квантово-спиновую динамику или квантовую гравитацию. Наибольший вклад в их разработку внесли Абэй Аштекар, Тед Джекобсон, Ежи Левандовски, Карло Ровелли, Ли Смолин и Томас Тиманн. Все это – сложнейшие физические построения, целые дворцы, возведенные из формул и гипотез, – лишь бы скрыть таящуюся в их глубине и темноте прорву, сингулярность времени и пространства.

Окольные тропы новых теорий заставляют нас перешагивать через очевидные, на первый взгляд, истины. Так, в квантовой геометрии пространство и время, прежде дробимые бесконечно, вдруг разбиваются на отдельные островки – порции, кванты, меньше которых нет ничего. Все сингулярные точки могут быть вмурованы в эти «каменные глыбы». Само пространство-время превращается в переплетение одномерных структур – «сети спинов», то есть становится дискретной структурой, своего рода цепью, сплетенной из отдельных звеньев.

Объем минимально возможной петельки пространства составляет всего 10 —99 кубического сантиметра. Эта величина настолько мала, что в одном кубическом сантиметре гораздо больше квантов пространства, чем тех самых кубических сантиметров в наблюдаемой нами Вселенной (ее объем составляет 10 85 сантиметров в кубе). Внутри квантов пространства нет ничего, ни энергии, ни вещества – подобно тому, как внутри математической точки – по определению – не отыскать ни треугольника, ни икосаэдра. Однако если мы применим гипотезу о «субмикроскопической ткани Вселенной», дабы описать Большой взрыв, мы получим поразительные результаты, как показали несколько лет назад Абэй Аштекар и Мартин Боджовальд из Пенсильванского университета. Если заменить в Стандартной теории космологии дифференциальные уравнения, предполагающие непрерывное течение пространства, другими дифференциальными уравнениями, следующими из теории квантовой геометрии, то таинственная сингулярность исчезнет. Физика не заканчивается там, где начинается Большой взрыв, – таков первый обнадеживающий вывод космологов, отказавшихся принимать за истину в последней инстанции видимые нами свойства мироздания.

В теории квантовой гравитации предполагается, что наша Вселенная (как и все другие) родилась в результате случайной флуктуации квантового вакуума – глобальной макроскопической среды, в которой не было времени. Всякий раз, когда в квантовом вакууме возникает флуктуация определенных размеров, рождается и новая Вселенная. Она «отпочковывается» от той однородной среды, в которой образовалась, и начинает свою собственную жизнь. Теперь у нее – своя история, свое пространство, свое время, своя стрела времени.

В современной физике создан ряд теорий, которые показывают, как из вечно существующей среды, где нет Макровремени, но в отдельных точках которой течет свое микровремя, может возникнуть такой громадный мир, как наш.

Например, итальянские физики Габриэле Венециано и Маурицио Гасперини в рамках теории струн предполагают, что изначально существовал так называемый «струнный вакуум». Случайные квантовые флуктуации в нем привели к тому, что плотность энергии достигла критической величины, и это вызвало локальный коллапс. Он завершился рождением нашей Вселенной из вакуума.

В рамках теории квантовой геометрии Абэй Аштекар и Мартин Боджовальд показали, что пространство и время могут возникать из более примитивных фундаментальных структур, а именно «сетей спинов».

Экхард Ребхан из Дюссельдорфского университета и – независимо от него – Джордж Эллис и Рой Маартенс из Кейптаунского университета развивают идею «статической Вселенной», которую обдумывали еще Альберт Эйнштейн и британский астроном Артур Эддингтон. В своем стремлении обойтись без эффектов квантовой гравитации Ребхан и его коллеги придумали сферическое пространство, которое пребывает посреди вечной пустоты (или, если хотите, пустой вечности), где нет никакого времени. Ввиду некоторой нестабильности здесь развивается инфляционный процесс, что и приводит к горячему Большому взрыву.

Конечно, перечисленные модели умозрительны, но они принципиально соответствуют современному уровню развития физики и результатам астрономических наблюдений последних двух десятилетий. В любом случае, ясно одно. Большой взрыв был скорее рядовым, естественным событием, а не единственным в своем роде.

Помогут ли подобные теории понять, что же могло быть до Большого взрыва? Если Вселенная родилась, что ее породило? Где в современных теориях космологии проступает «генетический отпечаток» ее родительницы? В 2005 году Абэй Аштекар, например, обнародовал результаты своих новых расчетов (проделать их помогли Томаш Павловски и Парамприт Сингх). Из них явствовало, что если исходные посылки верны, то до Большого взрыва существовали то же самое пространство-время, что и после этого события. Физика нашего мироздания, словно в зеркале, отразилась в физике мира иного. В этих расчетах Большой взрыв, будто зеркальный экран, рассекал Вечность, располагая рядом несоединимое – естество и его отражение. И что подлинность здесь, что призрак?

Единственное, что можно разглядеть «с той стороны зеркального стекла», что Вселенная тогда не расширялась, а сжималась. Большой взрыв стал точкой ее коллапса. В этот момент пространство и время на мгновение пресеклись, чтобы вновь отразиться – продолжиться – фениксом восстать уже в знакомом нам мире, том мироздании, которое мы вымеряем нашими формулами, шифрами и числами. Вселенная буквально вывернула сама себя наизнанку, словно перчатку или рубашку, и с тех пор неуклонно расширяется. Большой взрыв не был, по Аштекару, «творением целой Вселенной из Ничто», а являлся всего лишь переходом из одной динамической формы Вечности в другую. Может быть, Вселенная переживает бесконечную череду «больших взрывов», и эти десятки миллиардов (или сколько там) лет, разделяющие ее отдельные фазы, – лишь периоды «космической синусоиды», по законам которой живет мироздание?

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Загадки Большого взрыва

Загадки Большого взрыва Наша Вселенная возникла 13,7 миллиарда лет назад, порожденная Большим взрывом, и вот уже несколько поколений ученых пытаются понять этот феномен.В конце 1920-х годов Эдвин Хаббл открыл, что все видимые нами галактики разлетаются – словно осколки

КОНЦЕПЦИЯ «БОЛЬШОГО ВЗРЫВА»

КОНЦЕПЦИЯ «БОЛЬШОГО ВЗРЫВА» Возможность расширения Вселенной была предсказана теоретически как одно из следствий применения к решению космологических проблем общей теории относительности. Первые труды в этой области принадлежат талантливому советскому математику

Начинайте с большого

Начинайте с большого Имеет смысл править рукопись, начиная с наиболее крупных проблем. Если вдруг обнаружилось, что в сюжете есть значительный пробел, заполнение которого требует переработки первых шести глав, то вряд ли имеет смысл браться за шлифовку диалогов до того,

БОЛЬШАЯ ЗАГАДКА «БОЛЬШОГО ВЗРЫВА»

БОЛЬШАЯ ЗАГАДКА «БОЛЬШОГО ВЗРЫВА» Зрелище ночного звездного неба, усыпанного звездами, завораживает любого человека, чья душа еще не обленилась и не зачерствела вконец. Таинственная глубина Вечности распахивается перед изумленным человеческим взором, вызывая раздумья

Американские бомбы объемного взрыва

Американские бомбы объемного взрыва В начале 1960-х гг. в США были созданы бомбы объемного взрыва Их иногда называют объемно-детониру- ющими, поскольку принцип их действия базируется на детонации, возникающей в смесях горючих газов с воздухом. Взрыв такой смеси,

Что такое «Теория Большого взрыва»?

Что такое «Теория Большого взрыва»? В начале стоит прояснить этот вопрос для тех, кто с сериалом мало знаком. «Теория Большого взрыва» (в оригинале — The Big Bang Theory) — это американский комедийный сериал в жанре ситком (комедия ситуаций) про четырех ученых и симпатичную

До и после Большого взрыва

До и после Большого взрыва Their harmonies are right on. They could outsing us any day of the week. I don’t think John and myself ever had the sort of range they do[4]. Бывший «битл», сэр Пол Маккартни о Barenaked Ladies Один из главных вопросов, связанных с «Теорией Большого взрыва», — это почему сериал стал настольно успешным. Нельзя дать

Загадка Большого взрыва

Загадка Большого взрыва Веками и тысячелетиями ученых и богословов волновал вопрос: как появился наш мир? И те и другие хоть и отвечали на этот вопрос по-разному, но тем не менее одновременно придерживались той точки зрения, что Вселенная статична и неизменна. И этот

Что было до взрыва?

Что было до взрыва? В 1960 году любопытную гипотезу выдвинул американский физик-теоретик Джон Уилер. Согласно его предположению, когда-нибудь нынешнее расширение Вселенной сменится сжатием в сингулярность. После этого произойдет взрыв, и Вселенная вновь станет

Всё это было бы смешно, / Когда бы не было так грустно

Всё это было бы смешно, / Когда бы не было так грустно Из стихотворения «Александре Осиповне Смирновой» (1840) М. Ю. Лермонтова (1814—1841): Что ж делать. Речью неискусной Занять ваш ум мне не дано. Всё это было бы смешно. Когда бы не было так грустно. Используется как

Это было недавно, это было давно

Это было недавно, это было давно Название и рефрен песни, написанной композитором Вениамином Баснером на стихи поэта Михаила Львовича Матусовского (1915—1990) для кинофильма «Друзья и годы» (1964): На вечернем сеансе в небольшом городке Пела песню актриса на чужом языке.

Уплотнение просадочных грунтов замачиванием и энергией взрыва

Уплотнение просадочных грунтов замачиванием и энергией взрыва Замачивание необходимо выполнять через дно котлована, дренажные, взрывные или совмещенные скважины, заполненные дренирующим материалом, и продолжать до промачивания всей просадочной толщи до проектной

Большой взрыв и что было до него. Как происходил великий переход от Пустоты к Бытию

Откуда взялась Вселенная? Кажется, что идея, будто все это получилось из ничего, противоречит логике и здравому смыслу. Возможно, когда-нибудь наука объяснит не только то, как мир устроен, но и почему он устро ен именно так. По крайней мере, именно на это надеется, например, Ричард Докинз, который ищет ответ в теоретической физике, полагаясь на инфляционное расширение в первые доли секунды после Большого взрыва и на принцип космического отбора Вселенных, похожего на принцип естественного отбора Дарвина.

В начале 20 века считалось, что наша Вселенная состоит только из галактики Млечный путь, которая плывет сама по себе в бесконечном пространстве. С тех пор ученые установили, что Млечный путь является всего лишь одной из сотен миллиардов галактик – и это только в видимой нам части Вселенной. В настоящее время считается, что сам Большой взрыв лучше всего объясняет теория, названная «новая инфляционная космология». Согласно этой теории, взрывы, создающие вселенные, подобно Большому взрыву, случаются довольно часто. Инфляционная космология полагает, что наша Вселенная (которая возникла 14 миллиардов лет назад) появилась из пространства-времени уже существовавшей Вселенной и не является единственной физической реальностью, а представляет собой лишь невообразимо крохотную часть Мультивселенной. Хотя каждый из миров внутри Мультиверсума имеет определенное начало во времени, вся самовоспроизводящаяся структура в целом может быть вечной – таким образом, мы вновь будто возвращаемся к концепции статичной Вселенной, которая казалась навсегда отброшенной с открытием Большого взрыва.

Пока считалось, что Вселенная вечна, ее существование не слишком заботило ученых. Эйнштейн в своих гипотезах просто принял, что Вселенная вечна, и даже подправил уравнения теории относительности соответствующим образом. Однако с открытием Большого взрыва все изменилось. Эксперименты показывают, что мы живем в расширяющихся и охлаждающихся остатках космического комка, который взорвался около 14 миллиардов лет назад. Что могло вызвать этот первоначальный взрыв? И что ему предшествовало – и предшествовало ли что-нибудь вообще? Эти вопросы определенно входят в компетенцию науки, но любая попытка науки на них ответить натыкается на кажущееся непреодолимым препятствие, известное как «сингулярность».

Предположение, что Вселенная расширяется (вопреки прежней статичной модели) подтверждено в 1929 году астрономом Эдвином Хабблом на основании наблюдений за спектром звезд. Окончательным подтверждением инфляции Вселенной стало обнаруженное в 1965 году реликтовое излучение, которое осталось со времен Большого взрыва. Два исследователя из «Белл телефон лабораторис» случайно обнаружили вездесущее микроволновое излучение. Поначалу ученые подумали, что причиной постоянного шипения в микроволновом диапазоне является деятельность голубей. Если включить телевизор и настроиться между станциями на пустой канал, то примерно 10 процентов черно-белых крапинок на экране вызывается фотонами, которые остались с момента рождения Вселенной. Наглядней доказательство реальности Большого взрыва невозможно придумать – вы можете увидеть остывающие остатки Большого взрыва в собственном телевизоре.

В 1970 году Стивен Хокинг и Роджер Пенроуз показали, что эти попытки не могут увенчаться успехом. Хокинг и Пенроуз начали со вполне логичного предположения о том, что гравитация всегда притягивает, и приняли плотность материи во Вселенной примерно равной измеренной экспериментально. На основе этих двух допущений они с математической точностью доказали, что в начале Вселенной все-таки должна быть сингулярность.

Означает ли это, что тайна происхождения Вселенной останется навсегда неразгаданной? Не совсем так, скорее расчеты Хокинга и Пенроуза показывают, что Большой взрыв не может быть полностью понят «классической» космологией вроде теории относительности Эйнштейна, потребуются и другие теории.

Если проследить историю расширяющейся Вселенной вспять, Вселенная будет уменьшаться, пока в момент Большого взрыва не обратится в сингулярность. Здесь теория Эйнштейна прерывается и не может предсказать начало Вселенной и начало времени — только то, как она развивалась позже. В этой точке действуют исключительно законы квантовой механики: размытые по пространству волны-частицы движутся всеми возможными путями, и Вселенная может иметь бесконечное множество предысторий. Концептуальный тупик на Большом взрыве беспокоил космологов, и они стали искать сценарии, позволяющие избежать первоначальной сингулярности.

По словам Хокинга, одно из следствий теории квантовой механики заключается в том, что события, произошедшие в прошлом, не происходили каким-то определённым образом. Вместо этого они могли происходить всеми возможными способами. Это связано с вероятностным характером вещества и энергии согласно квантовой механике: до тех пор, пока не найдётся сторонний наблюдатель, материя будет находиться в неопределённости. Стивен Хокинг пишет: «Независимо от того, какие воспоминания вы храните о прошлом в настоящее время, прошлое, как и будущее, неопределённо и существует в виде спектра возможностей».

Читать еще:  Короткое сообщение о сергии родов. Преподобный Сергий Радонежский

Тем не менее остается вопрос: почему же существуют вся эта материя и энергия? Почему пространство-время нашей Вселенной обладает определенной геометрической формой и имеет конечный возраст? Почему оно насыщено разнообразными физическими полями, частицами и силами? И почему эти поля, частицы и силы подчиняются определенному набору законов – причем довольно запутанному? Разве не проще было бы, если бы не было вообще ничего?

Для бесконечного во времени мира (неважно, соответствует ли он инфляционной или другой теории) не существует необъяснимого «момента творения», в нем нет места «первопричине», нет произвольных начальных условий. Поэтому кажется, что вечный мир удовлетворяет принципу достаточной причины: его состояние в любой момент времени можно объяснить его состоянием в предыдущий момент.

Так если в момент Большого взрыва не было никакого перехода от Ничто к Нечто, то нет надобности искать причину, божественную или какую-то иную, которая вызвала к жизни Вселенную? И также нет необходимости ломать голову над поставленным нами вопросом «Откуда взялись материя и энергия во Вселенной?»: внезапного и фантастического нарушения закона сохранения энергии-массы во время Большого взрыва не было. А Вселенная всегда обладала одинаковой энергией-массой, от нулевого момента и до настоящего времени.

В каком экстремуме квантовые законы и, как следствие, исчезновение измерения времени могут проявиться на уровне Вселенной? Очевидно, когда вселенная сравнима размерами с атомным ядром. Именно это подразумевает теория Большого взрыва: все начинается с сингулярности — точки, в которой температура, плотность и искривление Вселенной были бесконечны. Из этой точки Вселенная начинает расширяться, и расширение (в соответствии с инфляционной моделью) продолжается до сих пор. Обратив вспять расширение, мы увидим, как содержимое Вселенной сближается, все более сжимаясь в одну точку. В конце концов, в самом начале космической истории, весь мир находится в состоянии бесконечного сжатия и стянут в «сингулярность». Общая теория относительности Эйнштейна утверждает, что форма пространства-времени определяется распределением энергии и материи. И когда энергия и материя бесконечно сжаты, то и само пространство-время тоже сжато – и оно просто исчезает.

Как именно, можно понять, если учесть, что через долю секунды после рождения вся наблюдаемая Вселенная была не больше атома. В таких масштабах классическая физика неприменима: в микромире правят законы квантовой теории. Поэтому космологи (среди них и Стивен Хокинг) стали задаваться вопросом: «А что, если квантовую теорию, которая использовалась только для описания субатомных явлений, применить ко всей Вселенной в целом?». Так родилась инфляционнаяквантовая космология, названная физиком Джоном Гриббином «наиболее значительным шагом вперед в науке со времен Исаака Ньютона»[1].

Квантовая космология предлагает способ обойти проблему сингулярности. Классические космологи полагали, что сингулярность, притаившаяся за Большим взрывом – это что-то вроде точки с нулевым объемом. Однако квантовая теория запрещает столь точно определенное состояние, утверждая, что на самом фундаментальном уровне природа обладает неизбежной размытостью, поэтому невозможно указать точный момент возникновения Вселенной, ее начальное время.

То, что квантовая теория разрешает, еще более интересно, чем то, что она запрещает. А разрешает она спонтанное возникновение частиц из вакуума. Такой способ создания Нечто из Ничто дал квантовым космологам плодотворную идею: что, если сама Вселенная, по законам квантовой механики, возникла из случайной флуктуации? Тогда причина того, что существует Нечто, а не Ничто, состоит в неустойчивости вакуума.

Утверждение физиков «вакуум неустойчив» подчас подвергается нападкам философов. Но физический вакуум и полная пустота является названием разных объектов. Однако о пустоте можно думать не только как об объекте, но и как об описании определенного состояния. Для физика «пустота» описывает такое состояние, когда нет частиц и все математические поля равны нулю. Возможно ли такое состояние в действительности? То есть согласуется ли оно логически с наблюдаемыми физическими реалиями? Возможно ли создать в наполненной Вселенной полную пустоту?

Одним из наиболее глубоких принципов, лежащих в самой основе нашего квантового понимания природы, является принцип неопределенности Гейзенберга, утверждающий, что определенные пары свойств связаны друг с другом таким образом, что не могут быть точно измерены вместе. Одна такая пара переменных – координаты и импульс частицы: чем точнее вы установили положение частицы, тем менее точно вам известно значение ее импульса, и наоборот. Другой парой сопряженных переменных являются время и энергия: чем точнее вам известен промежуток времени, в течение которого произошло какое-то событие, тем меньше вы знаете об энергии, связанной с этим событием, и наоборот.

Квантовая неопределенность запрещает точное определение значений поля и скорости изменения этого значения. Пустота, или вакуум – это состояние, в котором все значения полей постоянно равны нулю, однако принцип неопределенности Гейзенберга говорит, что если мы точно знаем значение поля, то скорость его изменения совершенно случайна, то есть не может быть равна нулю. Таким образом, математическое описание неизменной пустоты несовместимо с квантовой механикой – точнее, пустота неустойчива, или же чистой пустоты попросту не существует.

Идея, что Вселенная, содержащая сотни миллиардов галактик, могла появиться из пустоты, выглядит невероятной. Как показал Эйнштейн, любая масса представляет собой застывшую энергию. Однако огромному количеству положительной энергии, запертой в звездах и галактиках, должна противостоять отрицательная энергия гравитационного притяжения между ними. В «закрытой» Вселенной (той, которая со временем снова сожмется) положительная и отрицательная энергии должны точно уравновешивать друг друга. Другими словами, общая энергия такой Вселенной равна нулю.

Возможность создания целой Вселенной из нулевой энергии поражает воображение. С точки зрения квантовой механики Вселенная с нулевой энергией представляет собой интересную возможность. Допустим, что полная энергия Вселенной точно равна нулю. Тогда, благодаря взаимосвязи в неопределенности между энергией и временем (как утверждает принцип Гейзенберга), неопределенность во времени становится бесконечной. Другими словами, как только такая Вселенная возникнет из пустоты, то сможет существовать вечно. Что же касается причины, по которой Вселенная возникла, то это просто квантовая вероятность. Стивен Хокинг в книге «Великий замысел» пишет: «Если полная энергия Вселенной должна всегда оставаться нулевой, и необходимо затратить энергию, чтобы создать тело, как может вся Вселенная быть создана из ничего? Вот почему должен существовать такой закон, как гравитация. Так как гравитация притягивает, то энергия гравитации является отрицательной. Необходимо произвести работу, чтобы разделить гравитационно связанную систему, такую как Земля и Луна. Эта отрицательная энергия может быть сбалансирована положительной энергией, необходимой чтобы создать материю, но все не так просто. Отрицательная гравитационная энергия земли, к примеру, меньше, чем положительная энергия миллиардов частиц, из которых она состоит. Тело, такое как звезда, будет иметь больше отрицательной гравитационной энергии, и чем меньше она (частицы, из которых она состоит, находятся ближе друг к другу), тем больше будет ее отрицательная гравитационная энергия. Но прежде, чем отрицательной гравитационной энергии может стать больше положительной энергии вещества, звезда сколлапсирует в черную дыру, и черная дыра будет иметь положительную энергию. Вот почему пустое пространство стабильно. Тела, такие как звезды или черные дыры, не могут так просто появляться из ничего. Но целая Вселенная может!»[2]

С выводами Стивена Хокинга согласна и квантовая механика. Американский ученый русского происхождения Алекс Виленкин в книге «Мир многих миров» показал, что из начального состояния пустоты может спонтанно появиться крохотный кусочек наполненного энергией вакуума. Под действием отрицательного давления «инфляции» этот кусочек энергетического вакуума испытает безудержное расширение. Через пару микросекунд он достигнет космических размеров, испустив поток света и материи, создав Большой взрыв.

Таким образом, по мнению Виленкина, переход от Пустоты к Бытию происходит в два этапа. На первом крохотный кусочек вакуума появляется из вакуума. На втором он раздувается в наполненную материей предшественницу той Вселенной, которую мы сейчас видим вокруг. На данный момент принципы квантовой механики, управляющие первым этапом, являются самыми надежными принципами в науке. Что касается теории инфляции, которая описывает второй этап, то с момента своего создания в начале 80-х годов она успешно подтверждена не только теоретически, но и эмпирически – в частности, распределением реликтового излучения, оставшегося после Большого взрыва.

Что же происходит в момент Большого взрыва со временем? Общая теория относительности объединяется с квантовой теорией: искривление времени-пространства настолько велико, что все четыре измерения ведут себя одинаково. Иными словами, времени как особого параметра нет. А если времени нет, то нет и возможности говорить о начале Вселенной во времени, что устраняет проблему творения из Ничего.

Таким образом, сингулярность в начале Вселенной является не событием во времени, а скорее временной границей или краем. До нее никакого времени не было. Поэтому не было и времени, когда преобладало Ничто. И не было никакого «возникновения» – по крайней мере, во времени. Вселенная имеет конечный возраст, хоть и существовала всегда, если под «всегда» подразумевать все моменты времени. Вековой парадокс разрешается.

[1]Gribbin J . Q Is for Quantum. Free Press, 1998.

[2] Stephen Hawking and Leonard Mlodinow «The Grand Design»

Что было до Большого взрыва

Суперкомпьютер сумел реконструировать 4 тысячи сценариев рождения Вселенной

Реконструкция Вселенной до момента Большого взрыва.

Считается, что применительно к нашей Вселенной геометрическая сфера не совсем верно отражает реальность. В формате 4D, то есть в своем историческом развитии на протяжении почти 14 млрд лет, Вселенная напоминает скорее эдакий расширяющийся «бокал».

Научные открытия и тем более гипотезы не патентуются, но остаются в памяти коллег. Считается, что советский физик Георгий (Джордж) Гамов, эмигрировавший в 1930-е годы в Америку, первым сформулировал идею Большого взрыва (Big Bang). То есть момента, с которого началось развитие нашей Вселенной. Взрыв последовал за образованием сингулярности, или соединения в одной (сингулярной, от single – одинокий, единый) точке всей массы будущей Вселенной.

Всех этих слов Гамов не говорил, так как термин «сингулярность» появился много позже. Однако он, конечно же, знал о взрывах сверхновых. Но Гамов предположил существование космического микроволнового фона (СМВ – Cosmic Microwave Background), который и был со временем открыт. Позже выяснилась его анизотропия, неравномерность «нагрева». В СМВ, как оказалось, присутствуют «островки» – сгустки излучения более высокой температуры.

Затем было открыто расширение (экспансия) пространства. В конечном итоге очередную Нобелевскую премию вручили астрофизикам, которые доказали, что расширение идет к тому же с ускорением, которое и объясняет расширение космического «бокала», наблюдаемое сегодня.

Все это было весьма логично, особенно на фоне успехов, связанных с формулированием идеи сингулярности и исследованиями открытых в недрах галактик черных дыр, нейтронных звезд. Эти астрофизические объекты могут взрываться, давая яркие вспышки на небе. А могут и «схлопнуться» – коллапсировать с образованием черных дыр. Это приводит к искривлению лучей от далеких звезд, а также к существованию гравитационных волн, недавно зарегистрированных с помощью лазерных обсерваторий.

Все эти уникальные открытия вроде бы подтверждали «безумные» идеи знаменитого британского физика-теоретика Стивена Хокинга, предположившего существование не одной Вселенной, а сразу множества, Мультиверса. И вполне естественным на этом фоне кажется, что Вселенная существовала и до Big Bang. (Иначе чему было бы коллапсировать перед Большим взрывом.) По этому поводу идут нескончаемые споры и дискуссии. Однако все признают мистическую и пока неразрешимую и необъясненную загадку инфляции, последовавшей сразу же за Большим взрывом.

Вверху: вероятность и излучение Вселенной
до Большого взрыва и после него; внизу –
образовавшейся в результате Big Bang.
Иллюстрации Physorg

Инфляция, резкое «раздувание» возникшей Вселенной, произошла, согласно оценкам, за триллионные доли триллионных микросекунды. Возникла кварк-глюонная плазма, состоящая из отдельных кварков самой разной природы и пока еще не «склеивающих» их глюонов (от glue – клей). По мере охлаждения плазмы соединение «верхних» (up) и «нижних» (down) кварков дает протоны и нейтроны. Последние иногда начинают испускать «ядерные» электроны, причем левозакрученных больше, чем «правых».

Можно напомнить, что о расширении Вселенной впервые заговорил американский астроном Эдвин Хаббл, в честь которого был назван первый орбитальный телескоп. Именно телескоп Хаббла показал нам остатки сверхновой, образовавшие красивую «розетку» вокруг бывшей звезды. Причем астроном вел наблюдения, когда и радиотелескопов-то не было. Но тем не менее Хаббл обратил внимание на «воплощение» в небесных сферах допплеровского принципа изменения длины волн. В пространстве Вселенной оно проявляется так называемым красным смещением в спектре (Red Shift), которое тем больше, чем дальше от нас находится источник излучения.

К настоящему времени проект широкомасштабного исследования многоспектральных изображений и спектров красного смещения звезд и галактик при помощи 2,5-метрового широкоугольного телескопа в обсерватории Апачи-Пойнт (США), получивший название «Слоуновское цифровое обозрение неба» (Sloan Digital Sky Observer), накопил большой массив спектрографических данных от массивных галактик. Это позволило сотрудникам Астрофизического института на Канарах, что на острове Тенерифе, и Астрономической обсерватории Японии (PRD) реконструировать исходную Вселенную с помощью нового суперкомпьютера.

В комментариях ученых говорится, что им удалось обратить вспять космические часы – от мига инфляции и до сегодняшнего дня. По ходу дела компьютер «создал» 4 тыс. моделей развития вселенных, визуализировав их изменения под влиянием нелинейной гравитации. Свое возвращение «к истокам» авторы назвали созданием примордиальной Вселенной, максимально приближенной к стадии инфляции после Большого взрыва.

Ученые, заключая изложение своих результатов, пишут, что реконструкция играет важную роль как мера разумного ограничения при рассмотрении разных типов Вселенных вблизи инфляции. Возможно ведь, что некоторые черные дыры существовали еще до Big Bang.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector